Lcast: LISP-based Single-Source Inter-Domain Multicast

LISP WG, IETF-83, Paris

Florin Coras, Albert Cabellos and Jordi Domingo Universitat Politècnica de Catalunya

> Fabio Maino and Dino Farinacci Cisco Systems

1

Goal

- Build a network-layer single-source multicast framework
- Combine the efficiency of IP-multicast with flexibility of Application Layer Multicast (ALM)
 - Easy to deploy
 - Scalable
 - Configurable performance based on operational requirements

Inter-Domain Multicast

- Three sub-problems
 - Intra-domain multicast
 - Inter-domain multicast
 - Interface between the two

Lcast

Architecture Overview

- Interfaces with end-hosts by means of intra-domain multicast
 - ITRs convert intra-domain multicast subscriptions to Lcast subscriptions
- Data plane:
 - Over the Internet's core xTR overlay
 - xTRs unicast replicate content
- Control plane functions centralized in the MS of the source domain
 - Group management
 - Distribution tree optimization
 - Centralized performance control

Group Management

- Join
 - Initiated by end-hosts and intercepted by xTRs
 - xTR subscription requests are routed by the mapping system to the source domain's MS
 - For a joining xTR, the MS finds an overlay parent and requests that it replicates content to the newcomer
- Leave
 - A member leaving the overlay announces its intentions to the MS (graceful leave)
 - MS acknowledges the leave but only after it finds new parents for the leaving node's children

Distribution Tree Optimization

- Initiated by the MS
- Optimization algorithm
 - Degree-bounded spanning tree
 - Minimum average end-host *distance* to root
- Topology discovery
 - BGP: MS makes use of the BGP RIB in the xTR of the source domain to infer the number of AS hops between members
 - Latency: MS requests nodes to measure their latencies to a subset of peers according to an heuristic

Evaluation

- Internet-scale simulator
- We generate an Internet-like AS topology
 - We aggregated topology information from: CAIDA, RouteViews, RIPE, iPlane
 - Latency information from iPlane
- Generate traces of client arrivals and departures
 - End-host distribution in Ases
 - Passive capture of P2P TV traffic
 - 146k unique IPs in 3.8k ASes
 - Model client churn

P2P TV Traces Capture Points

Results

Results

Results Discussion (1)

- Control overhead is easily manageable
 - For 3k overlay members
 - Even when using active topology discovery
- Client churn
 - Slightly influences performance
 - Increases management overhead
- Fan-out

– Values larger than 6 offer limited benefits

Results Discussion (2)

- The latency-based optimization strategy
 - Offers unicast-like average latency and tight bounds
 - Larger, but manageable, control overhead
- BGP and random behave similarly
 - AS hops don't do a good job at estimating latency
 - Radom could be used as backup optimization strategy

Draft?

• Lcast architecture draft?

Backup Slides

Lcast Constraints and Assumptions

- No changes to host stacks
- Centralized group management
- Member (Router)
 - Constrained fan-out
 - Graceful leave
 - Connectivity robustness
- IGP stability

Distribution Tree Optimization Algorithm

- Minimum Average Distance Degree-Bounded Spanning Tree (MADDBST)
 - For a graph where vertices have weight, it constructs a degree-constrained spanning tree with the lowest average distance/weight to the root.
- When weight is clients it converts to a degreeconstrained ST with the lowest average distance/client to the root.
- NP-complete
 - Solved with an heuristic that incrementally grows a spanning tree starting at the root node while minimizing the distance/client of every member xTR

Results (3)

Results for latency topology discovery

