Lcast: LISP-based Single-Source Inter-Domain Multicast

LISP WG, IETF-83, Paris

Florin Coras, Albert Cabellos and Jordi Domingo
Universitat Politècnica de Catalunya

Fabio Maino and Dino Farinacci
Cisco Systems
Goal

• Build a network-layer single-source multicast framework

• Combine the efficiency of IP-multicast with flexibility of Application Layer Multicast (ALM)
 – Easy to deploy
 – Scalable
 – Configurable performance based on operational requirements
Inter-Domain Multicast

• Three sub-problems
 – Intra-domain multicast
 – Inter-domain multicast
 – Interface between the two
Lcast

Internet

S source
C client
→ Lcast
_ intra-domain multicast
Architecture Overview

• Interfaces with end-hosts by means of intra-domain multicast
 – ITRs convert intra-domain multicast subscriptions to Lcast subscriptions
• Data plane:
 – Over the Internet’s core xTR overlay
 – xTRs unicast replicate content
• Control plane functions centralized in the MS of the source domain
 – Group management
 – Distribution tree optimization
 • Centralized performance control
Group Management

• Join
 – Initiated by end-hosts and intercepted by xTRs
 – xTR subscription requests are routed by the mapping system to the source domain’s MS
 – For a joining xTR, the MS finds an overlay parent and requests that it replicates content to the newcomer

• Leave
 – A member leaving the overlay announces its intentions to the MS (graceful leave)
 – MS acknowledges the leave but only after it finds new parents for the leaving node’s children
Distribution Tree Optimization

• Initiated by the MS
• Optimization algorithm
 – Degree-bounded spanning tree
 – Minimum average end-host distance to root
• Topology discovery
 – BGP: MS makes use of the BGP RIB in the xTR of the source domain to infer the number of AS hops between members
 – Latency: MS requests nodes to measure their latencies to a subset of peers according to an heuristic
Evaluation

• Internet-scale simulator
• We generate an Internet-like AS topology
 – We aggregated topology information from: CAIDA, RouteViews, RIPE, iPlane
 – Latency information from iPlane
• Generate traces of client arrivals and departures
 – End-host distribution in Ases
 • Passive capture of P2P TV traffic
 • 146k unique IPs in 3.8k ASes
 – Model client churn
P2P TV Traces Capture Points

- California
- Virginia
- Ireland
- Barcelona
- Cluj-Napoca
- Singapore
- Tokyo
Results

Latency stretch

Av number of messages/xTR
Results

Number of messages/MS

Peak messages/s for the MS
Results Discussion (1)

• Control overhead is easily manageable
 – For 3k overlay members
 – Even when using active topology discovery

• Client churn
 – Slightly influences performance
 – Increases management overhead

• Fan-out
 – Values larger than 6 offer limited benefits
Results Discussion (2)

• The latency-based optimization strategy
 – Offers unicast-like average latency and tight bounds
 – Larger, but manageable, control overhead
• BGP and random behave similarly
 – AS hops don’t do a good job at estimating latency
 – Random could be used as backup optimization strategy
Draft?

- Lcast architecture draft?
Backup Slides
Lcast Constraints and Assumptions

• No changes to host stacks
• Centralized group management
• Member (Router)
 – Constrained fan-out
 – Graceful leave
 – Connectivity robustness
• IGP stability
Distribution Tree Optimization Algorithm

- **Minimum Average Distance Degree-Bounded Spanning Tree (MADDBST)**
 - For a graph where vertices have weight, it constructs a degree-constrained spanning tree with the lowest average distance/weight to the root.
- **When weight is clients it converts to a degree-constrained ST with the lowest average distance/client to the root.**
- **NP-complete**
 - Solved with an heuristic that incrementally grows a spanning tree starting at the root node while minimizing the distance/client of every member xTR.
Results (3)

Results for latency topology discovery

Latency stretch with 95% confidence interval

ECDF peer pairs measured/s

ECDF peers measured/member