
Datagram Transport Layer Security
in Constrained Environments

draft-hartke-core-codtls-01

Klaus Hartke • Olaf Bergmann

1I-D.hartke-core-codtls

Datagram Transport Layer Security
in Constrained Environments

Class 0: too small to securely run
 on the Internet

Class 1: ~10 KiB data, ~100 KiB code
	 	 	 “quite	constrained”

Class 2: ~50 KiB data, ~250 KiB code
	 	 	 “not	so	constrained”

Classes	of	Devices

• Smart Objects: want the security that DTLS provides

• DTLS has not been designed with constrained devices
and low-power, lossy networks in mind

• This is actually not a problem for many constrained devices,
but there are some challenges when it comes to implement
DTLS for at least Class 1 devices

•	draft-hartke-core-codtls:	
–	trying to figure out challenges and
 problems
– collect ideas for possible solutions
 and implementation guidance

2I-D.hartke-core-codtls

Request

Response

Client Server

1 roundtrip

CoAP without DTLS

3I-D.hartke-core-codtls

Fl
ig

ht 3
Fl

ig
ht 2

Fl
ig

ht 1
Client Server

Client Hello

Hello Verify Request

Client Hello

Server Hello
Certificate
Server Key Exchange
Certificate Request
Server Hello Done

Certificate
Client Key Exchange

Certificate Verify
Change Cipher Spec

Finished

Change Cipher Spec
Finished

Request

Response

Fl
ig

ht 4
Fl

ig
ht 5

Fl
ig

ht 6

4 roundtrips

CoAP with DTLS

4I-D.hartke-core-codtls

Fl
ig

ht 3
Fl

ig
ht 2

Fl
ig

ht 1
Client Server

Client Hello

Hello Verify Request

Client Hello

Server Hello
Certificate
Server Key Exchange
Certificate Request
Server Hello Done

Certificate
Client Key Exchange

Certificate Verify
Change Cipher Spec

Finished

Change Cipher Spec
Finished

Request

Response

Fl
ig

ht 4
Fl

ig
ht 5

Fl
ig

ht 6

4 roundtrips

CoAP with DTLS

ECDSA P-256: 91 bytes

ECDSA P-384: 120 bytes

ECDSA P-521: 156 bytes

Raw	Public	Key:	Certificate	sizes

DTLS handshake over 6LoWPAN:
max ~ 30-60 bytes per fragment

5I-D.hartke-core-codtls

Fl
ig

ht 3
Fl

ig
ht 2

Fl
ig

ht 1
Client Server

Client Hello

Hello Verify Request

Client Hello

Server Hello
Certificate
Server Key Exchange
Certificate Request
Server Hello Done

Certificate
Client Key Exchange

Certificate Verify
Change Cipher Spec

Finished

Change Cipher Spec
Finished

Request

Response

Fl
ig

ht 4
Fl

ig
ht 5

Fl
ig

ht 6

4 roundtrips

CoAP with DTLS

ECDSA P-256: 91 bytes

ECDSA P-384: 120 bytes

ECDSA P-521: 156 bytes

Raw	Public	Key:	Certificate	sizes

DTLS handshake over 6LoWPAN:
max ~ 30-60 bytes per fragment

6I-D.hartke-core-codtls

Fl
ig

ht 3
Fl

ig
ht 2

Fl
ig

ht 1
Client Server

Client Hello

Hello Verify Request

Client Hello

Server Hello
Certificate
Server Key Exchange
Certificate Request
Server Hello Done

Certificate
Client Key Exchange

Certificate Verify
Change Cipher Spec

Finished

Change Cipher Spec
Finished

Request

Response

Fl
ig

ht 4
Fl

ig
ht 5

Fl
ig

ht 6

4 roundtrips

CoAP with DTLS

ECDSA P-256: 91 bytes

ECDSA P-384: 120 bytes

ECDSA P-521: 156 bytes

Raw	Public	Key:	Certificate	sizes

DTLS handshake over 6LoWPAN:
max ~ 30-60 bytes per fragment

7I-D.hartke-core-codtls

Fl
ig

ht 3
Fl

ig
ht 2

Fl
ig

ht 1
Client Server

Client Hello

Hello Verify Request

Client Hello

Server Hello
Certificate
Server Key Exchange
Certificate Request
Server Hello Done

Certificate
Client Key Exchange

Certificate Verify
Change Cipher Spec

Finished

Change Cipher Spec
Finished

Request

Response

Fl
ig

ht 4
Fl

ig
ht 5

Fl
ig

ht 6

CoAP with DTLS

ECDSA P-256: 91 bytes

ECDSA P-384: 120 bytes

ECDSA P-521: 156 bytes

Raw	Public	Key:	Certificate	sizes

DTLS handshake over 6LoWPAN:
max ~ 30-60 bytes per fragment

reassemble

reassemble

8I-D.hartke-core-codtls

Fl
ig

ht 3
Fl

ig
ht 2

Fl
ig

ht 1
Client Server

Client Hello

Hello Verify Request

Client Hello

Server Hello
Certificate
Server Key Exchange
Certificate Request
Server Hello Done

Certificate
Client Key Exchange

Certificate Verify
Change Cipher Spec

Finished

Fl
ig

ht 4
Fl

ig
ht 5

CoAP with DTLS

reassemble

reassemble

Message
lost

CSS
Finished

Request

Response
Fl

ig
ht 6

Client Server

Fl
ig

ht 4
Fl

ig
ht 5

Retransmit
flight

5 roundtrips

reassemble

9I-D.hartke-core-codtls

• Handshake messages are big
 We need many frames to transport keys
 In principle: DTLS fragmentation is better
 than adaptation layer fragmentation

• DTLS has 25 bytes overhead per packet
 that carries a fragment

• Fills ~ 1/3 of usable frame

• More fragments increase likelihood
that messages get reordered or lost

• Every new packet uses energy

Handshake	protocol	–	
Potential problems

Re
co

rd
 h

ea
de

r
H

an
ds

ha
ke

 m
es

sa
ge

 h
ea

de
r

= 25 bytes

Version

Epoch

Sequence number

Length

Content type

Message length

Message type

Message sequence number

Fragment offset

Fragment length

10I-D.hartke-core-codtls

• (not to be decided here)

• Compress headers so more data can be transmitted
per fragment

– Can 6LoWPAN GHC handle this?
 Literal copies are replaced by references
 Zero sequences can be compressed

– Or should this better be done end-to-end?

• Is reordering is unlikely enough that a recipient can
simply ignore reordered messages and wait for
retransmission?

Handshake	protocol	–	
Possible solutions

11I-D.hartke-core-codtls

• DTLS has 21 bytes overhead per packet
 DTLS version is always the same (2 bytes)
 Epoch is mostly 0 or 1 (2 bytes)
 Sequence number is 6 bytes
 Length is redundant in last record in datagram
 CCM doubles sequence number and epoch

• Fills ~ 1/3 of usable frame

• Every new packet uses energy

Version

Epoch

Sequence number

Length

Content type

Epoch

Sequence number

Re
co

rd
 h

ea
de

r
CC

M
 e

xp
lic

it
no

nc
e

= 21 bytes

Application	data	protocol	–	
Potential problems

12I-D.hartke-core-codtls

• (not to be decided here)

• Compress headers so more data can be transmitted
per fragment

– Can 6LoWPAN GHC handle this?
 Literal copies are replaced by references
 Zero sequences can be compressed

– Or should this better be done end-to-end?

Application	data	protocol	–	
Possible solutions

13I-D.hartke-core-codtls

• Reassembling fragmented handshake messages

• Queuing reordered handshake messages

• Create connection state
– can often be done per-fragment

• Create verification hash for Finished message
– computed from sequence of messages
– reordering requires queuing

State	–
Potential problems

14I-D.hartke-core-codtls

• (not to be decided here)

• Possibly compute the hash in the Finished message
from the negotiated session parameters?

State	–
Possible solutions

15I-D.hartke-core-codtls

• Adjust
the timers...

Other guidance

ECC and RSA on Arduino

Library ROM

AvrCryptolib 3.6 KB

Wiselib 16.0 KB

TinyECC 18.0 KB

Relic 29.0 KB

Algorithm Library RAM Time

RSA-512 AvrCryptolib 320 B 25.0 s

RSA-1024 AvrCryptolib 640 B 199.0 s

ECC 128r1 TinyECC 776 B 1.8 s

ECC 192k1 TinyECC 1008 B 3.4 s

NIST K163 Relic 2804 B 0.3 s

NIST K233 Relic 3675 B 1.8 s

~ RSA 1024!

~ RSA 2048!

Implementations SHOULD use an initial timer value of 1 second
(the minimum defined in RFC 6298 [RFC6298]) and double the value
at each retransmission, up to no less than the RFC 6298 maximum
of 60 seconds. Note that we recommend a 1-second timer rather
than the 3-second RFC 6298 default in order to improve latency
for time-sensitive applications. Because DTLS only uses re-
transmission for handshake and not dataflow, the effect on con-
gestion should be minimal.

DTLS	Timer	Values

Time	to	sign	(Arduino) [Mohit Sethi]

16I-D.hartke-core-codtls

Code Size Description
1429 Bytes SHA-256

992 Bytes CCM
9812 Bytes DTLS state machine

TABLE I
CODE FOOTPRINT OF MINIMAL DTLS IMPLEMENTATION

IV. A LIGHTWEIGHT DTLS IMPLEMENTATION

The CoAP specification [3] offers three operation modes for
DTLS in constrained networks: PreSharedKey uses symmetric
key cryptography and requires only little processing overhead.
RawPublicKeys and Certificates use asymmetric ciphers and
thus provide advanced security features. As there are many
production-quality implementations for less-constrained de-
vices (regarding CPU power and memory), these operation
modes can be seen as mature and well understood.

Where resource usage is a concern, security parameters
should be tuned to enable lightweight implementations without
sacrificing the overall level of protection that can be achieved.
Of course, a trade-off exists between efficiency and the result-
ing security level.

As a proof of concept and to feed the ongoing discus-
sion of which parameters to adjust for the use of CoAP in
constrained networks, we have implemented the bootstrap-
ping protocol proposed in Section III for constrained nodes
of Class 1. The hardware is based on ST Microelectronics
STM32W108 with 128 KiB flash memory and 8 KiB RAM,
featuring ARM Cortex M3 CPU architecture. It is equipped
with an IEEE 802.15.4 RF transmitter and includes hardware
for AES-128 encryption. The Contiki operating system [17]
provides support for several boards of the STM32 chip family
as platform mbxxx.1 The CoAP protocol is handled by the
open-source library libcoap2.

Our DTLS implementation is based on the open-source
library tinyDTLS3, ported to Contiki. We have replaced the
existing cipher suite of tinyDTLS by our implementation of
TLS_PSK_WITH_AES_128_CCM_8 defined in [18]. Provid-
ing Authenticated Encryption with Associated Data (AEAD,
[19]), this cipher suite combines payload encryption and
message authentication. The base cryptographic primitives
required thus are only AES-128 encryption and SHA-256 for
the pseudo random function (PRF) of DTLS 1.2 [7]. Limiting
the key exchange options to pre-shared keys only, no certificate
exchange during DTLS handshake is required.

The resulting code size for these primitives and the DTLS
handshake protocol is shown in Table I.

The DTLS state machine comprises the cipher suite imple-
mentation as well as the DTLS record and handshake protocol
for both client and server functionality. For efficiency, we have
decided not to implement DTLS message fragmentation and
have limited the alert protocol to a minimum.

1See http://www.contiki-os.org/ for more information on the Contiki OS.
2See http://libcoap.sourceforge.net.
3See http://tinydtls.sourceforge.net.

These numbers can certainly be optimized, but already
indicate that a basic DTLS implementation is feasible with less
than 10 KiB of code plus 1.4 KiB for the hash underlying the
PRF. Depending on the actual cipher suites selected, only little
extra code is needed. For example, the overhead for CCM is
less than 1 KiB when AES encryption is in hardware, resulting
in approximately 12 KiB for the entire DTLS support.

The modest code size in this case is helped a lot by the use
of AEAD in combination with hardware AES-128 encryption.
Although improved error handling might add some code to
the implementation of the DTLS state machine, our results
demonstrate that DTLS is viable for communication security in
constrained nodes and networks. However, our optimizations
lose compliance with [7]. Future standardization should define
a minimal DTLS profile for constrained nodes, simplifying
error handling, removing the need to support fragmentation at
the DTLS layer, and limiting mandatory-to-implement cipher
suites to AEAD.

V. CONCLUSIONS

We have presented an approach for Smart Object security
based on security bootstrapping without pre-provisioned cre-
dentials and a basic implementation of DTLS. We are in the
process of gaining experience with this approach in a lighting
control scenario. In our implementation, we plan to optimize
tinyDTLS further, to improve its robustness, and to derive
some results on which are the most promising elements of the
protocol that may be mandatory to implement in the standard
but can be left out when needing a constrained implementation.

For work targeting a more managed deployment sce-
nario, we are also interested in the implementation re-
quirements for making asymmetric cryptography available to
CoAP/tinyDTLS nodes: this has become more accessible by
the recent work on using raw public keys instead of fully-built
X.509 certificates in the DTLS handshake [20].

Finally, our prototype should give us experience in devel-
oping suitable user interfaces for inexpensive mother devices.
With the ubiquity of relatively powerful smartphones, these are
becoming the home automation remote control of choice and
can be used to present relatively complex configuration and
security setup operations in a simple, familiar user interface.

REFERENCES

[1] K. Ashton. (2009, Jun. 22) That ’Internet of Things’ thing. RFID Journal.
[Online]. Available: http://www.rfidjournal.com/article/view/4986

[2] C. Bormann, “Guidance for Light-Weight Implementations of the Inter-
net Protocol Suite,” Internet-Draft (work in progress), Jan. 2012. [On-
line]. Available: http://tools.ietf.org/html/draft-bormann-lwig-guidance

[3] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained
Application Protocol (CoAP),” Internet-Draft (work in progress), Nov.
2012. [Online]. Available: http://tools.ietf.org/html/draft-ietf-core-coap

[4] K. Kuladinithi, O. Bergmann, T. Pötsch, M. Becker, and C. Görg,
“Implementation of CoAP and its Application in Transport Logistics,”
in Proc. of ’Extending the Internet to Low power and Lossy
Networks’ (IP+SN 2011), Chicago, 11. Apr. 2011. [Online]. Available:
http://hinrg.cs.jhu.edu/joomla/images/stories/coap-ipsn.pdf

[5] J. Arkko, H. Rissanen, S. Loreto, Z. Turanyi, and
O. Novo, “Implementing Tiny COAP Sensors,” Internet-
Draft (work in progress), Jul. 2011. [Online]. Available:
http://tools.ietf.org/id/draft-arkko-core-sleepy-sensors

• Data size...

• Code size...

Other guidance

ECC and RSA on Arduino

Library ROM

AvrCryptolib 3.6 KB

Wiselib 16.0 KB

TinyECC 18.0 KB

Relic 29.0 KB

Algorithm Library RAM Time

RSA-512 AvrCryptolib 320 B 25.0 s

RSA-1024 AvrCryptolib 640 B 199.0 s

ECC 128r1 TinyECC 776 B 1.8 s

ECC 192k1 TinyECC 1008 B 3.4 s

NIST K163 Relic 2804 B 0.3 s

NIST K233 Relic 3675 B 1.8 s

~ RSA 1024!

~ RSA 2048!

Code	footprint	of	minimal	DTLS	implementation [Olaf Bergmann]

RAM	usage	(Arduino) [Mohit Sethi]

Class 0: too small to securely run
 on the Internet

Class 1: ~10 KiB data, ~100 KiB code
	 	 	 “quite	constrained”

Class 2: ~50 KiB data, ~250 KiB code
	 	 	 “not	so	constrained”

Classes	of	Devices

17I-D.hartke-core-codtls

Possible actions

avoid

Implementation guidance
Implementation techniques for light-weight implementations
without affecting conformance

Stateless header compression
Compress record and handshake headers without explicitly
building any compression context state

Protocol profile for constrained environments
Use of DTLS in a particular way, e.g.
• require or preclude certain extensions or cipher suites
• change MAYs into MUSTs or MUST NOTs

Breaking changes

prefer
→ I-D.bormann-lwig-guidance

→ TLS WG

→ CoRE WG (?)

