ZigBee IP update

Robert Cragie robert.cragie@gridmerge.com

Introduction

- IP protocol stack specification
- 802.15.4 devices
- Mesh network (multihop)
- SEP 2.0 (Smart Energy) application layer traffic
- Certifiable platform
 PICS and Test Plan

Transport layer

- TCP
 - Data plane
 - HTTP
 - HTTPS
- UDP
 - Control plane
 - PANA, MLE
 - Data plane
 - CoAP
 - Not currently proposed for SEP 2.0
 - Maybe used in other application profiles

Network Layer

• IPv6

- RFC 2460
- Not using IPv4
- 6LoWPAN adaptation layer
 - RFC 4944 (IPv6 over 15.4)
 - RFC 6282 (Header compression)
- Stateless address autoconfiguration (SLAAC)
 - RFC 4862
 - Maps IPv6 addresses to link layer addresses
 - 16 and 64 bit MAC addresses

Neighbor discovery

- "Classic" ND
 - RFC 4861
 - Not all features used
- 6LoWPAN ND
 - draft-ietf-6lowpan-nd
 - Extends "classic" ND for LLNs and multi-link subnets

Routing

- RPL
 - RFC 6550
 - Route-over
 - Intermediate routers as well as border router
 - Based on Directed Acyclic Graph (DAG)
- Trickle multicast
 - draft-hui-6man-trickle-mcast

Security (1)

- Link layer security
 - 802.15.4 frame security
 - Global network key
- PANA (EAP transport)
 - RFC 5191 (PANA)
 - RFC 6345 (PANA relay)
 - Carries EAP in UDP datagrams
 - Convenient for 6LoWPAN

Security (2)

- EAP-TLS (EAP method)
 - RFC 5216
 - Carries TLS records for authentication and key establishment
- TLS cipher suites
 - Pre-shared key
 - c/w Wi-Fi passphrase
 - Elliptic curve DH and ECDSA
 - In conjunction with device certificate

Additional IETF protocols developed

- MLE (Mesh Link Establishment)
 - Transfer of link costs between neighbors
 - Improved link costs for RPL metrics
 - Transfer of frame counters between neighbors
 - Freshness checking and nonce consistency
 - Dissemination of network-wide information, e.g. beacon payload
- PANA relay
 - Enables PANA for multihop networks
- PANA encryption extensions
 - Secure delivery of configuration parameters

Implementation

- Can't give details for commercial reasons
- Aimed at LWIG class 2 devices
 - ~50 kiB data (RAM), ~250 kiB code (Flash)
 - draft-bormann-lwig-guidance
 - Class 1 devices may be able to act as hosts
 - Some devices have more resources and processing power (e.g. ARM9 core, MiBs RAM/Flash)
- Home-grown OS, embedded Linux

Restrictions to meet resource constraints

- 6LoWPAN 4 contexts + stateless (64-bit and 16bit address)
- RPL non storing mode
 - Resources required mainly at DAG root
 - Source routing down the DAG
- TLS only two cipher suites
 - Pre-shared key
 - Elliptic curve for processing speed up and memory saving
- Buffer restrictions for pending data to sleeping hosts

Other implementation efficiencies

- Holistic approach to combining protocols
- RPL, ND, MAC all have concepts of neighbors and stored addresses
- Limit the storage by linking tables from different protocols together
- Cross-layer management more complex API whereby all protocols have access to other data and can use it accordingly

Next steps for LWIG

Produce more detailed ID or incorporate in guidance document