Network Overlay Framework

Draft-lasserre-nvo3-framework-01

Authors

Marc Lasserre Florin Balus Thomas Morin Nabil Bitar Yakov Rekhter Yuichi Ikejiri

Purpose of the draft

- This document provides a framework for Data Center Network Virtualization over L3 tunnels. This framework is intended to aid in standardizing protocols and mechanisms to support large scale network virtualization for data centers:
 - Reference model & functional components
 - Help to plan work items to provide a complete solution set
 - Issues to address

Generic DC Network Architecture

IP/MPLS WAN) `_+____+' +--+-+ +-+--+ |DC GW| + - + |DC GW|+-+---+ (' '.--. .-.' Intra-DC ' (network '--'...)\\ / / '--' \ \ +---+ +-`.+--+ +--+--+ TOR | | TOR | | TOR +-+--`.+ +-+--+ +-+--+ \backslash .' \backslash .' i./ i./ '____' '____' End : : End : : End : : End : Device : : Device : : Device : : Device : !____! '____' '____' '____'

DC GW: Gateway to the outside world (e.g. for inter-DC, VPN and/or Internet connectivity)

- Intra-DC Network: High capacity
 network composed of core
 switches/routers aggregating
 multiple ToRs
- Top of Rack (ToR): Aggregation
 switch (cal also provide
 routing, VPN, tunneling
 capabilities)
- End Device: DC resource such as a compute resource (server or server blade), storage component, a network appliance or a virtual switch

Reference model for DC network virtualization over a L3 Network

physical appliance

NVE Generic Reference Model

The NVE functionality could reside solely on End Devices, on the ToRs or on both the End Devices and the ToRs

Virtual Network Identifier

- Each VNI is associated with a VNID
 - Allows multiplexing of multiple VNIs over the same L3 underlay
- Various VNID options possible:
 - Globally unique ID (e.g. VLAN, ISID style)
 - Per-VNI local ID (e.g. per-VRF MPLS labels in IP VPN)
 - Per-VAP local ID (e.g. per-CE-PE MPLS labels in IP VPN)

Control Plane Options

- Control plane components may be used to provide the following capabilities:
 - Auto-provisioning/Auto-discovery
 - Address advertisement and tunnel mapping
 - Tunnel establishment/tear-down and routing
- A control plane component can be an onnet control protocol or a management control entity

Auto-provisioning/Service Discovery

- Tenant End System (e.g. VM) autodiscovery
- Service auto-instantiation
 - VAP & VNI instantiation/mapping as a result of local VM creation
- VNI advertisement among NVEs
 - E.g. can be used for flood containment or multicast tree establishment

Address advertisement and tunnel mapping

• Population of NVE lookup tables

Ingress NVE lookup yields which tunnel the packet needs to be sent to.

 Auto-discovery components could be combined with address advertisement

Tunnel Management

- A control plane protocol may be used to:
 - Exchange address of egress tunnel endpoint
 - Setup/teardown tunnels
 - Exchange tunnel state information:
 - E.g. up/down status, active/standby, pruning/ grafting information for multicast tunnels, etc.

Overlays Pros

- Unicast tunneling state management handled only at the edge (unlike multicast)
- Tunnel aggregation

 Minimizes the amount of forwarding state
- Decoupling of the overlay addresses (MAC and IP) from the underlay network.

Enables overlapping address spaces

• Support for a large number of virtual network identifiers.

Overlays Cons

- Overlay networks have no control of underlay networks and lack critical network information
- Fairness of resource sharing and co-ordination among edge nodes in overlay networks
 - Lack of coordination between multiple overlays on top of a common underlay network can lead to performance issues.
- Overlaid traffic may not traverse firewalls and NAT devices
- Multicast support may be required in the overlay network for flood containment and/or efficiency
- Load balancing may not be optimal

Overlay issues to consider

- Data plane vs Control Plane learning
 - Combination (learning on VAPs & reachability distribution among NVEs)
 - Coordination (e.g. control plane triggered when address learned or removed)
- BUM Handling
 - Bandwidth vs state trade-off for replication:
 - Multicast trees (large # of hosts) vs Ingress replication (small number of hosts)
 - Duration of multicast flows

Overlay issues to consider (Cont'd)

- Path MTU
 - Add'I outer header can cause the tunnel MTU to be exceeded.
 - IP fragmentation to be avoided
 - Path MTU discovery techniques
 - Segmentation and reassembly by the overlay layer
- NVE Location Trade-offs
 - NVE in vSw, hypervisor, ToR, GW:
 - Processing and memory requirements
 - Multicast support
 - Fragmentation support
 - QoS transparency
 - Resiliency

Next Steps

- Terminology harmonization
- Add'l details about hierarchical NVE functionality