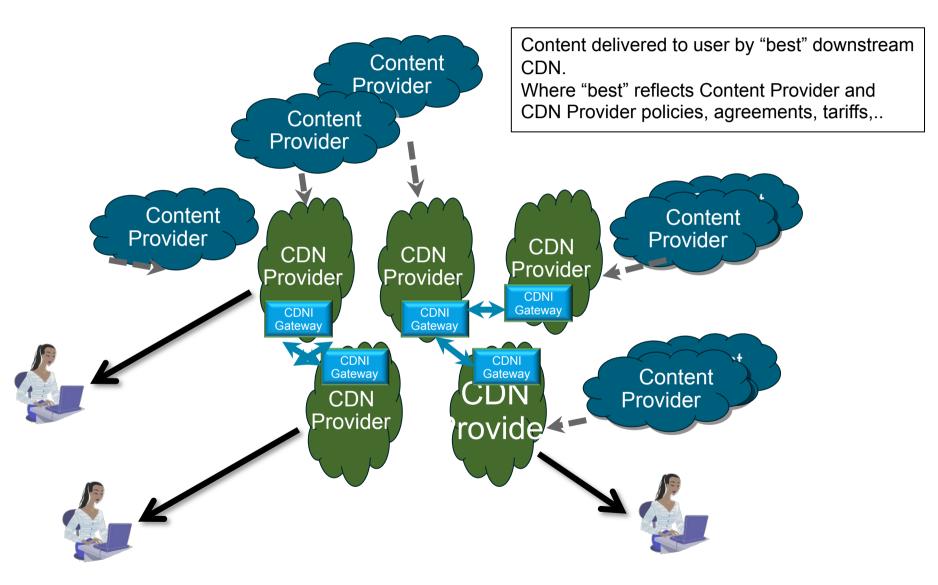
Routing Technologies for Non Routing Technologies

The CDNI Case

Stefano Previdi – sprevidi@cisco.com

Paris, March 2012

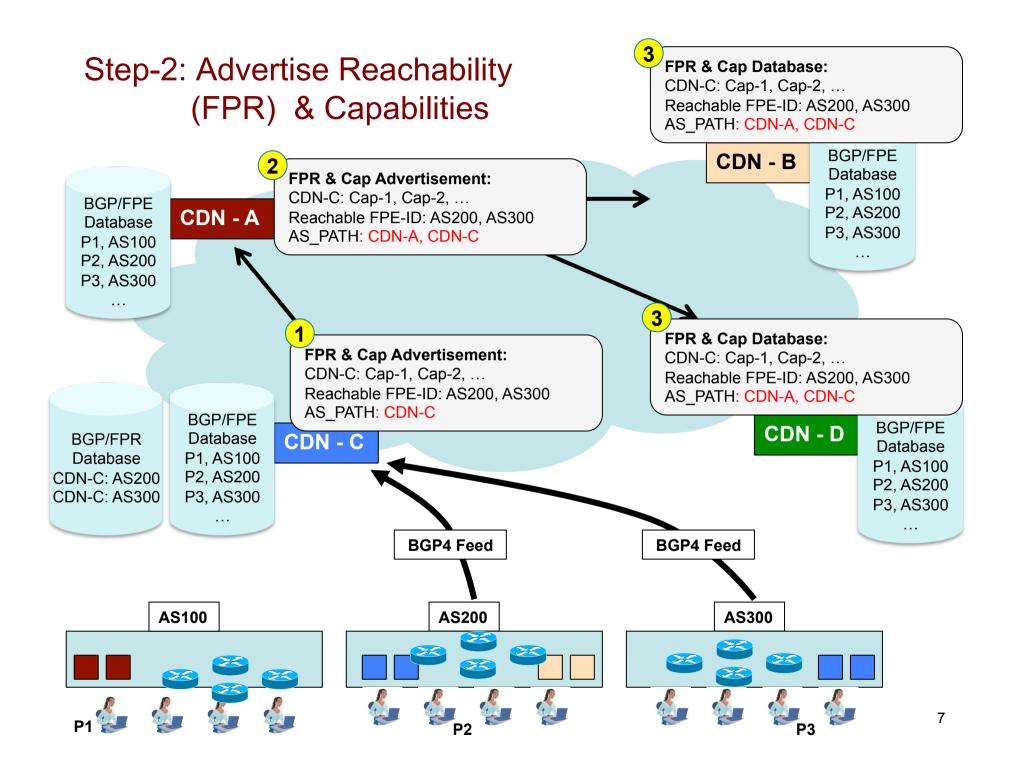

Introduction

- Routing concepts and paradigms aim to answer a simple question:
 - Where this packet should go ?
- The question is intensively asked in layer-3
 - And brilliantly answered by routers...
- A similar (but NOT the same) question is asked in upper layers (application, content, cloud, ...)
 - E.g.: where this user should get content from ?
- Despite network layer business is "routing" and application layer business is "redirection", it is undeniable that topology/infrastructure information does help in the process for both cases
 - E.g.: IGP shortest path, PCALC, FRR, ...
 - E.g.: Proximity Ranking, topology abstraction, ...
 - ...
- This presentation gives an overview on one case where this may be applicable

Example: CDNI (IETF CDNI WG)

- CDNI: Content Delivery Networks Interconnect
 - CDNI is a CDN mesh/federation where each CDN has to answer a simple question:
 - Where this user should get the content from ?
- CDNI overview
 - CDNs form a mesh/federation
 - CDNs exchange information about their footprints and capabilities
 - An upstream CDN relies on a downstream CDN for content delivery
 - The downstream CDN is selected based on multiple criteria among which _ONE_ is related to CDN footprint:
 - Where is the user ? Where is the content ? Is there anything valuable to know in the middle ?
- A CDN footprint consists on the set of prefixes the CDN is capable/willing/ able to serve
 - In theory: the whole internet
 - In practice: the set of prefixes under "close" reach of CDN caches
 - "Close" is a floating value...

Example: CDNI (IETF CDNI WG)



Footprint and Footprint Reachability

- One proposal makes use of MP-BGP (with extensions)
 - Note well: proposal is under discussion in the CDNI WG and there's no consensus at this stage (go to slide 11 for details)
 - draft-previdi-cdni-footprint-advertisement
 - Under work: new attributes TBD, fix the encoding proposal, ...
- Footprint Element and Footprint Reachability concepts
 - Footprint Element (FPE): set of prefixes a CDN can "locally/best" reach
 - Can be inferred from BGP database if AS grouping is enough
 - Explicit advertisement of group of prefixes if necessary (grouping through communities would just work fine)
 - FPE gets an identifier
 - Footprint Reachability (FPR): FPE a CDN claims reachability to
 - FPR Advertisement: set of FPE Identifiers plus attributes

Step-1: Infer Footprint from BGP-4 Database

Workflow

- When an upstream CDN (uCDN) receives a request from a user, it has to determine the downstream CDN (dCDN) the request is to be redirected to:
 - Determine which footprint the user belongs to
 - Lookup in Footprint Elements Database
 - Determine dCDN claiming connectivity to user Footprint
 - Lookup in Footprint Reachability Database
 - Apply selection rules

What CDNI needs from (MP)-BGP

- New AF, new NLRI, new messages
- Additional selection rules
- Additional attributes... maybe
- Nothing substantially different from what has been done already
 - Yet Another BGP Extension...
- The difference is that we don't use the information for routing

Other Examples

- BGP-LS
 - Distribution of topology information (optical, link-state, TE, ...) to whoever may have a use for it
- ALTO
 - Application Layer Traffic Optimization WG
 - Aims to provide network hint to applications
 - BGP-LS already plays a significant role in topology acquisition
 - In some implementations...

Concerns, Issues, Experiences...

 Layers have a scope: isolation and separation... and it works pretty well: routing and application folks talk very little...

"Routing folks don't understand we, application folks, have different requirements and their IGP/BGP/... stuff won't work"

"Application folks don't get that with IGP/BGP/TE/PCE/... you solve all problems"

"Don't hack my routing protocol, you application fool"

Pick your preferred one...

Conclusions

- Multiple use cases exist where routing technologies may help
 - CDNI, Cloud, Network Proximity, ...
- Some cases require protocol extensions
 - BGP-LS, BGP-CDNI, ISIS/OSPF Metric Extensions, GenApp, MI, ...
- Obviously:
 - (Re)using routing technology means NOT fate sharing
- Efforts on:
 - Extend routing protocols so to cope with these use cases
 - New deployment guidelines for routing for application cases

Thank You