Algorithms for computing Maximally Redundant Trees for IP/LDP Fast-Reroute draft-enyedi-rtgwg-mrt-frr-algorithm-01

Alia Atlas (Juniper Networks)
Gabor Enyedi, Andras Csaszar (Ericsson)

IETF 83, Paris, France

Agenda

- Briefly about the algorithm
- Problem
- Avoid using a node
- Non-2-connected networks

Agenda

- Briefly about the algorithm
- Problem
- Avoid using a node
- Non-2-connected networks

ADAG and partial order

ADAG and partial order

- Almost DAG (ADAG)
- $A \ll B$ if there is a path from A to B
- Root is both the shortest and the greatest

- $S \ll E$
- Blue path: increasing [S, E]
- Red path: decreasing [Root, S] and [E, Root]

ADAG and partial order

- $S \gg A$
- Blue path: increasing [S,Root] and [Root, A]
- Red path: decreasing [A, S]

ADAG and partial order

- S and C are not ordered
- Blue path: [S, E] and [C, E]
- Red path: [A, S] and [A, C]

Agenda

- Briefly about the algorithm
- Problem
- Avoid using a node
- Non-2-connected networks

Three trees

- We have tree trees
- SPT
- Two MRTs
- There is no connection between SPT and MRTs
- Impossible to find a redundant pair for SPT
- Example:

Agenda

- Briefly about the algorithm
- Problem
- Avoid using a node
- Non-2-connected networks

Total order

- Partial order can compare any X only with S
- We need to compare any two nodes
- Make a total order as well
- If $A \ll B$, let $A<B$
- If A and B are not ordered select either $A<B$ or $B<A$
- This can be done with a topological oder after converting the ADAG into a DAG
- Results:
- If $A<B$, either $A \ll B$ or A and B are not ordered

A possible total order

- Numbers are written next to nodes

Possible cases

- If dst>>src, failed node F

If $\mathrm{S} \ll \mathrm{F}<\mathrm{E}$, it may be on the BLUE path

Possible cases

- If dst<<src, failed node F

Possible cases

- If dst and src are not ordered
- There are four sub-paths

If $F \gg$ src, it may be on the first part of the RED path

F and src are not ordered, and F<dest, it may be on the second part of BLUE path

Agenda

- Briefly about the algorithm
- Problem
- Avoid using a node
- Non-2-connected networks

Non-2-connected problem

- In this case we don' t have a single order
- Neither a partial order
- Nor a total order
- Convert the GADAG into an ADAG!

Non-2-connected problem

- In this case we don' t have a single order
- Neither a partial order
- Nor a total order
- Convert the GADAG into an ADAG!

Thank you!

