Lightweight 4over6 +

SD-nat (aka stateless DS-Lite)

_

Lightweight DS-Lite (twice as light!)

Peng Wu Ian Farrer

Introduction

History

Lightweight 4over6-05

- Merge two documents
 - I-D.cui-softwire-b4-translated-ds-lite
 - I-D.zhou-softwire-b4-nat
- Focus on architectural discussion
 - Current I-D does not recommend any provisioning method. Rather it suggests it is up to operators to decide what to use.

• SD-Nat-02

- Use minPort-maxPort ICMP message
 - instead of [1024-Maxport] only
 - No need for ALGs on AFTR
- Focus on DS-Lite only
 - (no description of NAT444 case)

Motivations

- Extension to DS-lite with no NAT, and address sharing mode for Public 4over6
 - backward compatible
- IPv4 address sharing
 - Subscriber-level port set allocation
- Scalability requirement
 - Per-session=>per-subscriber state
 - Easy/No logging
- No IPv4 and IPv6 address coupling

Benefits of allocating independently IPv6 and IPv4 address

- IPv6 addresses do not have to be allocated sequentially.
- Easily define and change IPv4 customer profiles (number of ports).
- IPv4 resources can be re-allocated freely.
- Anycast announcements can be fine tuned.

Not Tying IPv6 address to IPv4 address plus port range

- In general, removing the mathematical restriction allows the operator to deliver the service he wants to offer, in the way he wants to offer them.
- The price to pay is to provision and manage resources at a finer granularity.
- Introduce per-subscriber state on tunnel concentrator (AFTR)
 - No per flow state!

Technical Matrix

AFTR Provisioning Architecture

Role of AFTR

- Upstream
 - Decapsulate IPv6 header
 - Ingress filtering
 - ACL check on IPV4 address + port against per-subscriber mapping table
 - Send ICMP message back to CPE if ACL fails
- Downstream
 - Subscriber lookup
 - Check IPv4 address + port against per-subscriber mapping table
 - Encapsulate in IPv6

Top-Down subscriber management

Bottom-Up subscriber management

- IPv6 address of CPE
- IPv6 prefix
- IPv4 address of CPE
- IPv4 port range of CPE

local AFTR Per-subscriber mapping table

IPv6	IPv4	Port Range
2001:db8::1	192.1.2.3	1000-1999
2001:db8::2	192.1.2.3	2000-2999

Local database: No stateless fail-over between AFTRs DHCPv4 Server/Relay

Tunnel Concentrator

AFTR box

No central database to pre-allocate IPv4 or IPv6 customer information

DHCPv6

Trade-off Top-Down vs Bottom-Up

Bottom-Up

- IPv4 addresses & ports managed locally by AFTRs
- No centralized subscriber database of IPv4/IPv6 resources
- Need per-subscriber logging to reconcile information
- Fail-over similar to standard DS-Lite

Top-Down

- IPv4 addresses and port centrally managed
- Each AFTR has same subscriber mapping table
- Enable stateless fail-over between AFTRs

CPE Configuration Architecture

"lightweight DS-Lite" CPE Provisioning

- IPv4 address
 - DHCPv4 over IPv6
 - PCP
- IPv4 port range
 - ICMP
 - DHCPv4 over IPv6 option
 - DHCPv6 option
 - PCP option
- → We need to select one as mandatory to implement

Stateless DS-Lite Architecture

AFTR Per-subscriber mapping table

IPv6	IPv4	Port Range
2001:db8::1	192.1.2.3	1000-1999
2001:db8::2	192.1.2.3	2000-2999

ICMPv4 "Port Restricted" over IPv6 tunnel

Stateless DS-Lite CPE implements:

- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP "Port Restricted" to configure its NAT port range

DHCPv4 server

IPv4

AFTR Per-subscriber mapping table

IPv6	IPv4	Port Range
2001:db8::1	192.1.2.3	1000-1999
2001:db8::2	192.1.2.3	2000-2999

DHCPv6 "Port Restricted"

Stateless DS-Lite CPE implements:

- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP "Port Restricted" to configure its NAT port range

AFTR Per-subscriber mapping table

IPv6	IPv4	Port Range
2001:db8::1	192.1.2.3	1000-1999
2001:db8::2	192.1.2.3	2000-2999

DHCPv4 "Port Restricted"

Stateless DS-Lite CPE implements:

- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP "Port Restricted" to configure its NAT port range

Lightweight 4over6
Architecture
PCP variant

AFTR Per-subscriber mapping table

IPv6	IPv4	Port Range
2001:db8::1	192.1.2.3	1000-1999
2001:db8::2	192.1.2.3	2000-2999

PCP "Port Restricted" message

Stateless DS-Lite CPE implements:

- DHCPv4 Client Relay Agent (over IPv6) to configure B4 element IPv4 address
- ICMP "Port Restricted" to configure its NAT port range

Proposal: ICMP port restricted message as minimum mandatory to implement

- AFTR need to be provisioned with persubscriber mapping information to enforce ingress filtering
- AFTR must notify the CPE when port is out of assigned range
- Need a new ICMP message type for that
- Just use it to carry correct port range information!

Adding other mechanisms as optional to implement

- DHCPv4 port range option
- PCP port range option

 If CPE is implementing an optional method, it must take intersection of ICMP information and optional method information.

Next Steps

Moving Forward

- Merge two proposals
- Create two new documents:
 - Document 1:
 - General framework (NAT in CPE, Binding table in AFTR)
 - Trade-off between Top-Down and Bottom-up AFTR provisioning model
 - Backward compatibility with DS-Lite & public 4over6
 - Document 2:
 - CPE protocols
 - Reference to DHCPv4 over IPv6 for IPv4 address
 - ICMP port-restricted as minimum mandatory to implement
 - Optional port allocation methods: DHCPv4 & PCP options