
  

TRILL OAM
draft-ietf-trill-rbridge-oam-02.txt

IETF 82 – Paris
March, 2012

David Bond, Meenakshi Kaushik,
Thomas Narten, Santosh (Sunny) Rajagopalan



  

Moving Forward With OAM

●
No defined core OAM for TRILL yet...

●
Implementors need guidance and a roadmap on OAM ASAP or risk of missing “window 
of opportunity” for a industry-wide approach 

●
WG MUST identify baseline OAM components to be finalized and completed 
ASAP

●
We have multiple OAM related documents being proposed:

●
draft-ietf-trill-rbridge-oam-02.txt

●
draft-yizhou-trill-multi-destination-ping-01.txt

●
draft-tissa-trill-oam-03.txt

●
draft-rohit-trill-proactive-oam-00.txt

●
Suggest taking a requirements-oriented approach

●
What functionality is required (i.e., MUST)?

●
What is nice-to-have (but can be optional and/or defined in a separate/later document?)

●
Once we agree on required functionality, what is best engineering solution for satisfying 
the requirement?

●
Take the best parts of various drafts and combine into a complete OAM suite



  

Changes to ietf-trill-rbridge-oam

● Removed error codes that were not needed (e.g. Corrupt frame)
● But some of these really ought to go into the MIB

● Added path sharing traceroute with 'real' data being sent.

● Added previous hop information TLV.

● Made most TLVs optional to allow hardware/fast path 
implementations where this information might not be available.

● Changed Next Hop Nickname TLV into Next Hop Information TLV 
since next hop might not always reserve a nickname.  The new TLV 
includes the next hop system id.

● Moved the values table to the message format section and 
converted from table to list.

● Numerous minor typo corrections and wording clarifications.



  

Additions to MIB?

● Removed error codes from OAM document that 
did not seem appropriate
● Does not seem useful to return error messages 

saying “corrupt frame” or “unknown egress RB”
● But, those sorts of errors should presumably be 

counted/logged.
● Isn't that what MIBs are tailor-made for?

● Believe we should add some counters to MIB
● But sense some pushback on making further 

changes to the MIB because it's “almost done”



  

Need Multi-Destination Ping

● Seems defficient not to have multi-destination 
ping

● Working to merge in yizhou-trill-multi-
destination-ping
● Based on existing OAM framework using channel 

mechanism
● One document seems better than two
● Didn't make it into the revised document



  

OAM Requirements (assertion)

● Verifying path liveness (Ping)
● Path Discovery (Traceroute)

● All possible paths
● A path (but not all paths)
● The path data looking like X would follow
● Unpruned tree discovery
● Pruned tree discovery

● Fault finding (Traceroute)
● Fault Isolation (Traceroute)
● Fault Notification (BFD)



  

Required Functionality?

● Known Unicast Ping
● From RB1, ping RB2
● Verifies path liveness between RB1 and RB2

● Known Unicast Traceroute (between RB1 and RB2)
● Shows path between RB1 and RB2
● Variations:

– Simple Traceroute (show a path)

– All Possible Routes Traceroute

– Fate-sharing Traceroute (path followed by particular flow)
● Known multi-Destination Traceroute (Un-pruned)

● Known multi-Destination Traceroute (Pruned)



  

High-Level Decisions to Make

● RBridge Channel vs. ICMP?
● Useful but could be considered as an addition 

to a basic OAM suite. 
● Address-Binding Verification
● MAC address discovery
● End-Station Attachment Point Discovery
● Traffic Triggered Monitoring



  

Trill-Specific OAM vs ICMP

● Should TRILL OAM use TRILL-specific OAM or 
attempt to leverage ICMP?
● TRILL does not currently require an IP Stack – are 

we willing to mandate an IP stack?
● Not all traffic is IP (e.g., FCoE)
● IP/ICMP proposal assumes one can use L2 header 

fields without effecting ECMP
– not necessarily a valid assumpion



  

Address-Binding Verification

● Allows an operator to query the IP Address to 
MAC Address or MAC Address to IP Address 
mappings of VMs
● Not a TRILL-specific problem
● Aren't there already existing tools for this, and if not, 

why should TRILL define them?



  

MAC Address Discovery

● Identify MAC – RBridge bindings
● Similar to functionality already provided by 

ESADI
● Why does TRILL OAM need to do anything special 

here?
● Why not snoop ESADI traffic and build such a table 

if necessary, then use SNMP to query the specific 
RB for additional associated info



  

End-Station Attachment Point 
Discovery

● Allows discovering, RBridge, interface 
information, VLAN, virtual Tags, etc, associated 
with a given IP Address.

● Potentially useful, but
● Is this an essential part of core TRILL OAM?
● Would it be reasonable to pursue this as an optional 

feature in a separate document?



  

Traffic Triggered Monitoring

● Monitor and analyze existing traffic crossing 
TRILL 

● This would presumably involve monitoring traffic 
that traverses a TRILL campus
● Monitoring is of an end-to-end nature, TRILL just 

happens to be a component.
● What is it that makes this a TRILL problem?
● Better solved outside of TRILL?
● What does TRILL need to do to support such 

external functionality?



  

BACKUP



  

Required Unicast Functionality

● Which of the following are required functionality?

● Known Unicast Ping
● From RB1, ping RB2
● Verifies path liveness between RB1 and RB2

● Known Unicast Traceroute (between RB1 and RB2)
● Shows path between RB1 and RB2
● Simple Traceroute
● All Possible Routes Trace
● Fate-sharing Traceroute

● Multi-Destination Traceroute (Un-pruned)

● Multi-Destination Traceroute (Pruned)



  

Known Unicast Ping

● Simple ping using RBridge Channel to test 
connectivity

● Limitation: 
● Does not provide any way to mimic real data as this 

is only meant for a simple connectivity test and not 
for path discovery/fault isolation

● But still useful for most cases

●



  

Known Unicast Traceroute

● Three Variants
● Simple Traceroute

– Uses RBridge Channel
– Simple single path discovery between  two RBridges

● All Possible Paths Trace
– Uses RBridge Channel but violates that drafts by setting the 

locally administered bit and incrementing destination mac 
over N traceroutes to test all ECMP paths

– After N traceroutes there is a reasonable certainty that all 
routes have been covered

– RBridge Channel Ethertype used to ensure frames to leave 
TRILL campus



  

Known Unicast Traceroute

● Fate Sharing Traceroute
● Sends mimicked data (a real inner frame with hop 

count limited)
● Data will not leak because frames will never be 

egressed since hop count errors are trapped to OAM 
module and the RBridge originating the traceroute will 
stop sending frames once the egress RBridge has been 
hit

● Additionally zeroing the check sum provides another 
layer of protection if a frame ever did leak (e.g. if an 
RBridge did not implement the OAM standard)



  

Multi-Destination Traceroute (Un-
pruned)

● Uses RBridge Channel with multi-destination bit 
set

● No leaking since DST MAC is 
ALL_EGRESS_RBRIDGES



  

Multi-Destination Traceroute 
(Pruned)

● Uses Tissa’s approach but is not IP-centric. Uses 
any payload
● Inner DA is multicast address

● ECMP is not an issue, because path is determined 
entirely by the choice of shared tree.

● To prevent frame leakage outside of TRILL:
● Proposal: set the inner source MAC address to 

ALL_EGRESS_RBRIDGES and require egress RBridges 
MUST NOT egress such frames outside TRILL


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

