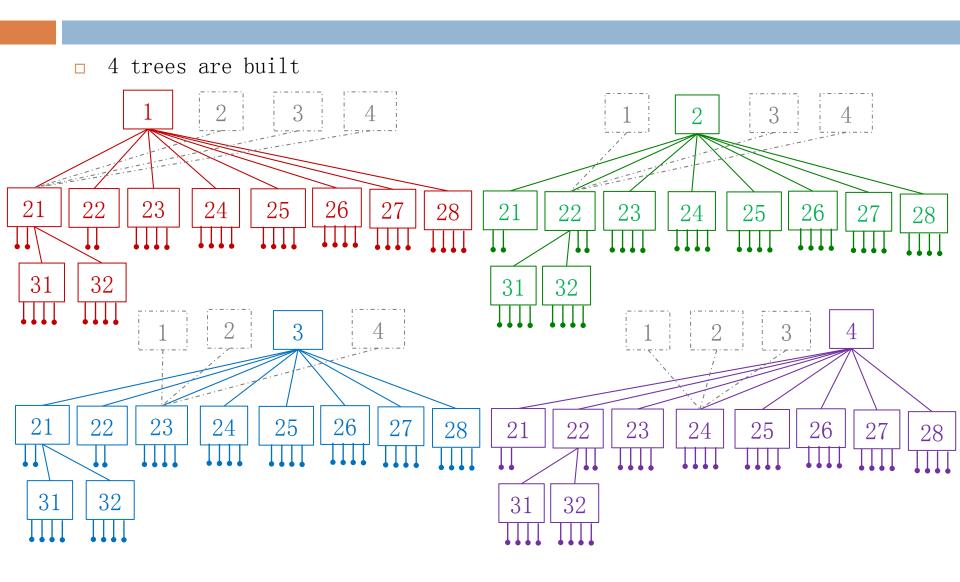

VLAN BASED TREE SELECTION FOR MULTI-DESTINATION

draft-yizhou-trill-tree-selection-00


Yizhou Li (liyizhou@huawei.com)
Weiguo Hao (haoweiguo@huawei.com)
Somnath Chatterjee (somnath.chatterjee01@gmail.com)

Background (1)

□ Each distribution tree SHOULD be pruned per VLAN

Background (2)

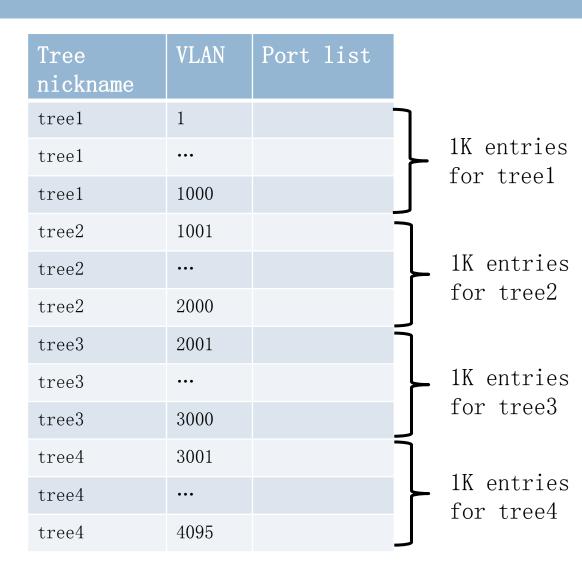
Motivations (1)

Multicast forwarding table on RB21 has 16K entries.

Tree nickname	VLAN	Port list	
treel	1	1, 10, 20, local port 50, local port 60	
tree1	•••		4K entries for tree1
tree1	4095	1, 10, 20, local port 50, local port 60	
tree2	1	2, local port 50, local port 60	7
tree2	•••	•••	4K entries for tree2
tree2	4095	2, local port 50, local port 60	J for treez
tree3	1	3, 10, 20, local port 50, local port 60	7
tree3	•••	•••	► 4K entries
tree3	4095	3, 10, 20, local port 50, local port 60	for tree3
tree4	1	4, local port 50, local port 60	417
tree4	•••		4K entries for tree4
tree4	4095	4, local port 50, local port 60	J 101 01001

Motivations (2)

- □ Table size == n*m entries. (n is #of trees, m is #of VLANs with downstream receivers)
- □ More entries required if L2/L3 multicast address to be used for finer pruning
 - □ n*m where m is #of VLANs with downstream receivers * #of multicast groups per VLAN
 - Value of m may exceed 10K in theory
- □ Linearly increasing with #of trees
- □ Table size is limited. May share a 8K/16K-entry table with IP multicast/VSI forwarding entries.
- □ Propose: VLAN based tree selection to reduce the table size
 - still allows the traffic sharing among trees


VLAN based Tree Selection

□ Concept:

- highest priority tree root announces tree-VLAN correspondence which is the value pair of (tree id, VLANs allowed on this tree id)
- ingress RB selects the tree-VLAN correspondence it is interested in and wishes to use from the list.
- It should not transmit VLAN x frame on tree y if the highest priority tree root does not say VLAN x is allowed on tree y.
- Achieved VLAN based load balancing by selecting different trees

VLAN based Tree Selection Example

- □ If we let the highest priority tree root announces:
 - □ (tree1, Vlan 1-1000)
 - □ (tree2, Vlan 1001-2000)
 - □ (tree3, Vlan 2001-3000)
 - □ (tree4, Vlan 3001-4095)
- Ingress selects and announces (tree id, interested vlan) from the announced tree-VLAN correspondence
- Multicast table entries
 are reduced to 4K
 (maximum).
- Table size shrunk:
 - \square n * m \rightarrow m

Other issues

Compatibility:

- New and old RB announces tree-used-id and interested VLAN per RFC6325
- New RB additionally announces (tree id, interested-vlan) which must be value combinations allowed by the highest priority tree root
- Always able to tell new or old RB, thus build the table correspondingly in new or old way

Failure handling

- Failure of a tree root
- Failure of the highest priority tree root

Extensions

extended to (VLAN+L2/L3 multicast group) based tree selection

Next Step

- □ TLV format for (VLAN + L2/L3 multicast address) based tree selection
- □ More detailed compatibility consideration