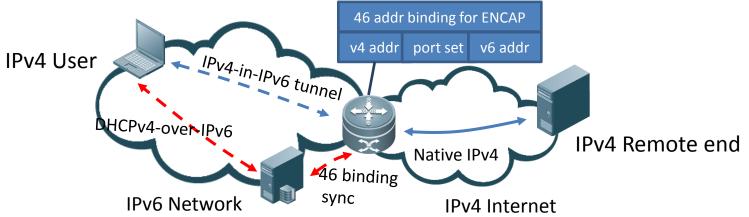
DHCPv4 Options for Port-Set Assignment

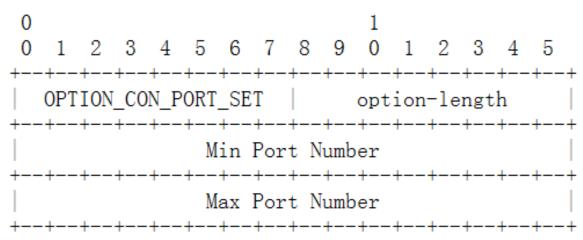

draft-bajko-pripaddrassign-04 draft-wu-dhc-port-set-option-00

Background

- The possible IPv4 address exhaustion in the near future
- IPv4 address sharing between end users
 - Manner 1: Carrier-grade NAT
 - NAT444, NAT64, DS-Lite
 - Manner 2: Divide full address into port sets and assign them to end users
 - "A+P" style
 - Lightweight 4over6, MAP, 4RD

DHCPv4 for port-set assignment

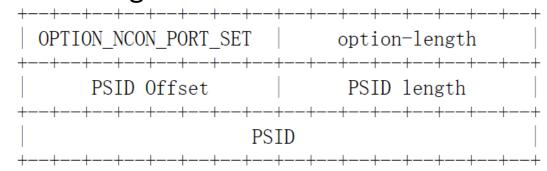
- Use case: lightweight 4over6
 - Per-user stateful IPv4-over-IPv6 mechanism
 - Lightweight 4over6 [draft-cui-softwire-b4-translated-ds-lite-07]
 - DHCPv4-over-IPv6 for IPv4 assignment in IPv6 net
 - draft-ietf-dhc-dhcpv4-over-ipv6-03
 - Port-set assignment in DHCPv4



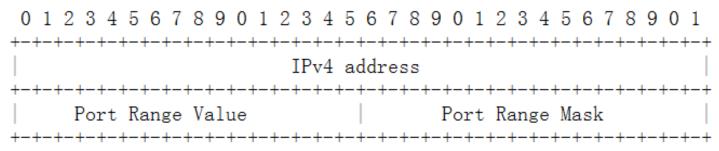
Defined options/sub-options

- For different styles of port set
- draft-wu
 - Contiguous Port Set Option
 - GMA Port Set Option
- draft-bajko
 - Port Mask Sub-Option
 - Random Port Delegation Sub-Option

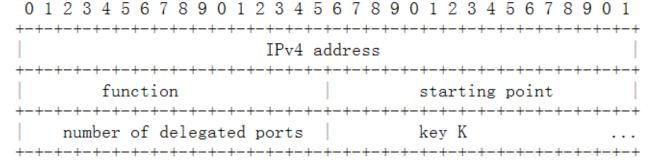
Contiguous Port Set Option


- Assign a contiguous port range
- Bounded by Min & Max port number
- Format:

GMA Port Set Option


- Following the GMA Port mapping algorithm

 Proposed in draft-ietf-softwire-map
- Port-set format:
 A (j) | PSID (K) | M (i) |
 A (j) | PSID (K) | M (i) |
- Preserve well-known ports
 A(i) cannot be 0 => preserve first 2.
 - A(j) cannot be 0 => preserve first 2^(k+m) ports
- Port-set consists of scattered port ranges
 - (2^a-1) port ranges of size 2^m
 - Could be contiguous: a=0


Port Mask Sub-Option

- Port set determined by 16-bit mask and value
- Port-set Format
 - Port-set Mask: position of the significant bits of mask (set to "1")
 - Port-set Value: value of the significant bits (port-set ID)
 - Significant bits can be scattered in the total 16 bits
- Compose a port set with scattered port ranges
 - Could be more scattered than GMA
 - Could be contiguous: mask=11...100...0
- Preserving well-known ports: not defined
- IPv4 address assigned in the sub-option as well

Random Port Delegation Sub-Option

- Encryption function to achieve randomness
 - Input: key K, integer x as the plaintext \in [1024, 65535]
 - Output: integer y as the ciphertext ∈ [1024, 65535], to be the assigned port number
 - Encryption function determined in advance between C/S
- Compose a port set with randomized, scattered ports
 E(K, a), E(K, a+1), ..., E(K, a+2047)
- Preserve well-known ports (0~1024)
- IPv4 address assigned in the sub-option as well
- The sub-option is *encryption-algorithm-specific*

More about port randomization

- Prevent Blind attacks against TCP/UDP
- First step: making the port-set non-contiguous
- More sophisticated solutions
 - 1.User randomly selects source port from the port-set
 - RFC6056
 - Algorithms need to evolve for non-contiguous port-set
 - 2.Server pre-allocates random-style port-set
 - Random Port Delegation sub-option
 - the client is forced to use random ports
 - Decryption is needed for encapsulation destination lookup logic on tunnel concentrator

Discussion on DHCP-centric issues

- Multiple options for multiple port-set type vs. One option with multiple sub-options
 - DHCPv4 option code precise?
 - With multiple options, client can indicate the expected port-set type and avoid mismatch
 - From the server perspective, the server controls the port-set management manner

Discussion on DHCP-centric issues

- IPv4 address assigned in original DHCP message vs. in port-set option
 - Both could work
 - If in port-set option, need to clarify the usage of address-related options like IP address lease time option in this context
 - If in original message, client that do not recognize the port-set option could misuse the whole address
- WG guidance on the two issues?

Next steps

- Merged as one document, or separated document for different options?
- WG adoption?