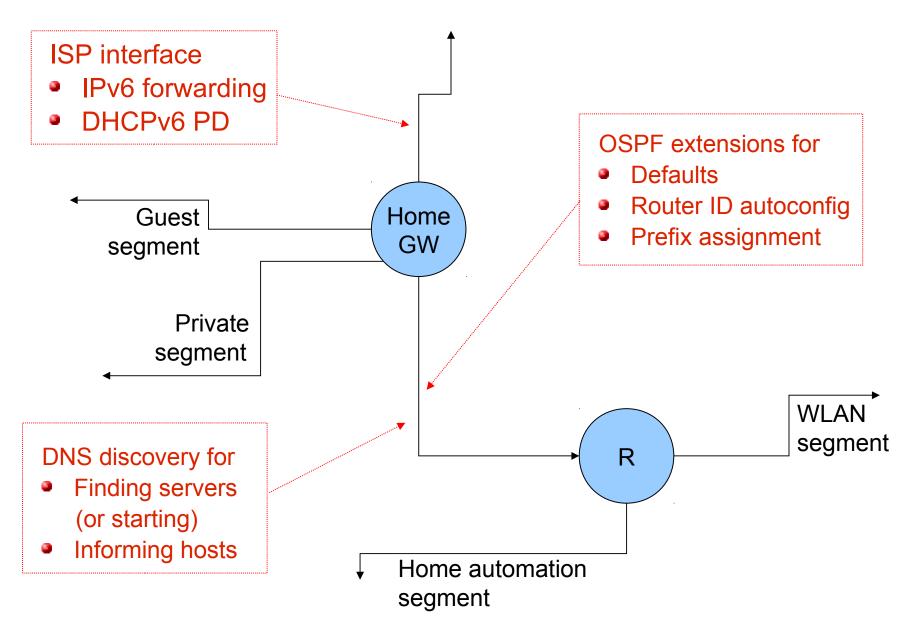

OSPFv3-Based Home Networking

draft-arkko-homenet-prefix-assignment-02.txt

Jari Arkko, Ericsson Acee Lindem, Ericsson Benjamin Paterson, Cisco


ERICSSON

The Dream

No matter how many boxes you have And how you connect them

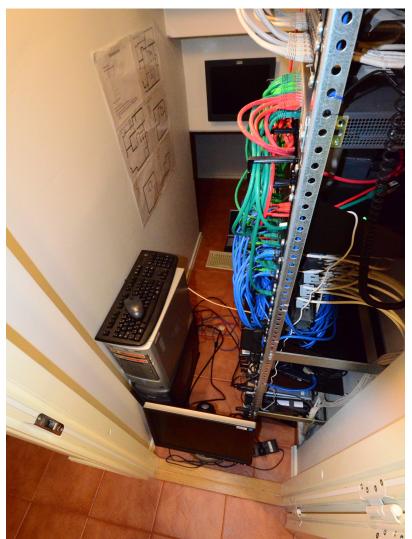
- Networks shall have address space
- Routers shall know where to send packets
- Names resolve to addresses
- Human touch is not required [Especially by my mother!]

OSPF-Based Home Networking

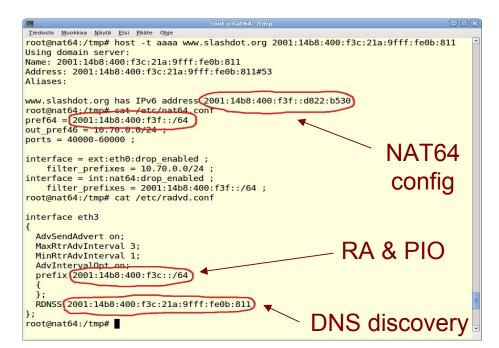
Implementing and Using HOMENET

Status Report

Two implementations up and running!

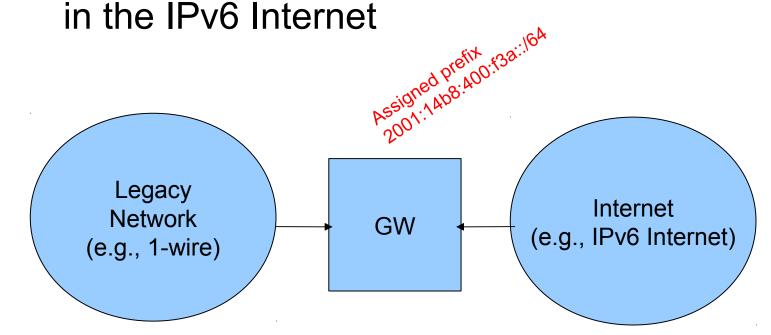

Generally, seems to work well

But implementations are early & incomplete


The protocol design is still morphing (but that was the point of these exercises)

A HOMENET Network

Router ID



hord: debug: 21897, OSPF: Timeout causes a message resend hord: debug: 21897, RAW: sendto destination fe80::20c:46ff:fe16:9c86 ^C root@newrouter:/tmp# cat /etc/hord/events Selected own router ID: 16.191.119.86 Selected own hardware fingerprint: 16.191.119.86 Automatically assigned a prefix to an interface on interface ethl: 2001:db8:beef:ddd6::/64 Added a new neighbor on interface ethl: 49.66.233.220 Received a valid DD message from neighbor with sequence number on interface ethl: 49.66.233.220 1954 Neighbor moves to EXSTART state on interface ethl: 49.66.233.220 DD sequence number to a neighbor initialized on interface ethl: 1008170920 Tentatively selecting ourselves as the master for the neighbor on interface ethl: 49.66.233.220 New DD message sent with sequence number, in response to a sequence number on interface ethl: 100817 This router becomes a slave to the following peer on interface ethl: 49.66.233.220 Negotiation done, moving to state EXCHANGE with neighbor on interface ethl: 49.66.233.220

Enabler for Other Things...

 E.g., automatic 1-wire to IPv6 translation GW; sensors are visible as CoAP servers in the IPv6 Internet

Feel free to try your CoAP client to, e.g., toaster.objez.net

activit	yroom	
balco	balcony	
bedro	ommaster	
bedro	omjanne	
bedro	omolli	
circuit	breakercabinerrk1b	
comm	unicationscloset	
dining	roomeast	
dining	roomwest	
entra	nce	
ether	netswitch	
fileser	rverdisk	
kitche	n	
koneh	nuoneserver	
livingr	roomeast	
livingr	roomtvcorner	
owhul	b	
router	r i	
secon	dutilityroom	
storag	geroom	
storag	geroomneargarage	
study	room	
techn	ologyshaft2nd	
techn	ologyroom	
techn	ologyshaft	
terrac	e	
toaste	ər	
ventila	ationusedairout	
ventila	ationfreshairtorooms	
ventilationfreshairin		
ventila	ationusedairback	
weath	erserver	

Draft-02 Updates

- Added an algorithm to generate ULAs (S. 7)
- Replaced the old algorithm for prefix allocation with a new one (S. 6.3)
- Added an explicit discussion of hysteresis (S. 8)
- Added a requirement to support DNS discovery (S. 4.2)
- Described the design choices (S. 5)
- Added Benjamin as an author
- Various small bug fixes and editorial changes

Prefix Allocation Algorithm in Draft-02

- Assigns /64 prefixes out of an allocated prefix (e.g., /56, the "usable prefix")
- One or several routers in the network know the usable prefix(es), all routers co-operate to make the assignments
- The algorithm is triggered by changes in the LSA database or the set of interfaces this router has
- Benjamin's thesis demonstrates some properties relating to the algorithm (convergence, some aspects of correctness, ...)

Overview of the Algorithm

- Routers participate in the autoconfiguration protocol as defined in draft-acee-ospf-ospfv3-autoconfig and calculate their router IDs
- AC LSAs are flooded, with the Usable Prefix TLVs included by those routers who know such prefixes
- The algorithm is run for every pair <usable prefix, interface>
- Assignments are flooded in Assigned Prefix TLVs
- Hysteresis and stable storage applied for stability

Allocations in the Algorithm

- An allocation is made for an interface, unless there is already an allocation from someone else on the same link or when a neighbor has a higher routerID
- Conflicts can occur both on a link and across the network
- Upon detecting a conflict, the higher router ID "wins" and the other withdraws its allocation

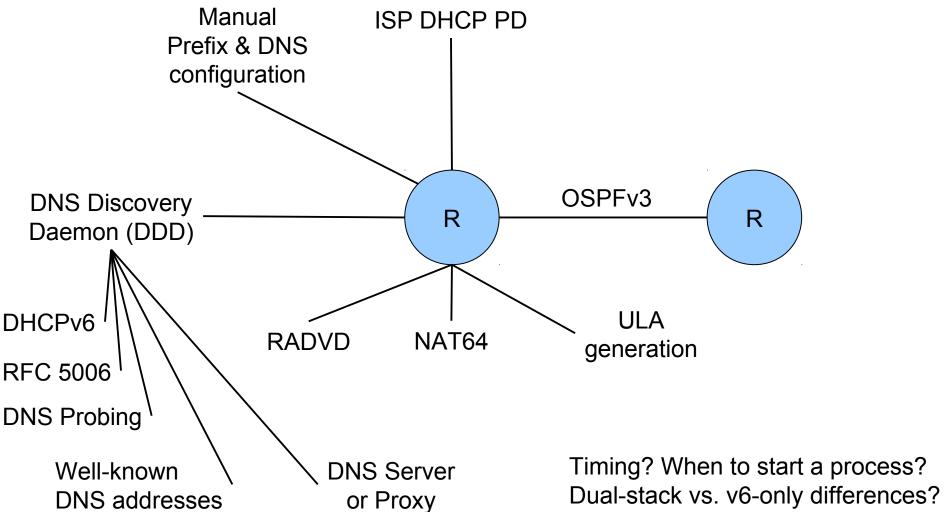
ULA Generation in Draft-02

- This router does NOT need to generate a ULA prefix if any of the following conditions are true:
 - There already is a usable prefix
 - A router with a higher ID is reachable
 - This router has a global address
 - ... or can reach the IPv4 Internet
- If not, create a new /48 ULA per RFC 4193
- Apply the usual procedures on NVM, hysteresis, ...
- Some open questions remain

DNS Discovery in Draft-02

- The WG has so far focused mostly on the naming issue as an extension of, say, mDNS to work across subnets
- As I used an autoconfigured network, I realized that while this is useful, it may not be the highest priority task
- How does a host deep in the network resolve www.ietf.org or other name in the Internet?

DNS Discovery in Draft-02


- A router needs to inform hosts within its networks about the addresses of DNS servers
- RECOMMENDED that homenet router supports
 - RA options (RFC 6106)
 - Stateless DHCP (RFC 3736)
- Leaves open where this information comes from
 - My implementation uses DDD to gather information from all possible sources
- But should the routers distribute this info?

Experiences

Here are some experiences:

- The technology seems to work as intended
- Our understanding of the problems developed as the work continued, e.g., on conflicts, naming, interfaces
- Relatively easy to implement, 2-4 KLOC as long as you are sane enough to not implement all of OSPFv3 from scratch...
- It is important to think about interfaces to other systems

Interactions with Other Parts

Firewalls and border detection?

Topics for Further Discussion 1

- Hysteresis, algorithms, ULA generation probably need more review & experience
- Interactions with other systems need to be described in greater detail
- If a router discovers a DNS server, how does it tell other routers about this find?
- Do we need a priority mechanism to decide allocations when there is not enough space?
 - Or even (shock!) a > 64 bit prefix solution?

Topics for Further Discussion 2

- Alternative designs for LSAs used by the algorithm:
 - Approach 1: TLVs within the AC LSA (draft-02)
 - Approach 2: Just use intra-area-prefix LSAs
 - Approach 3: A provisional assignment LSA followed by actual allocation LSAs (app. 1 or 2)
- There may be use cases for the draft's technology outside the home networks
 - "RFC 3041 for prefixes"
 - Current thinking is that we should be able to deliver prefixes for any purpose