LISP Replication Engineering coras-lisp-re-00

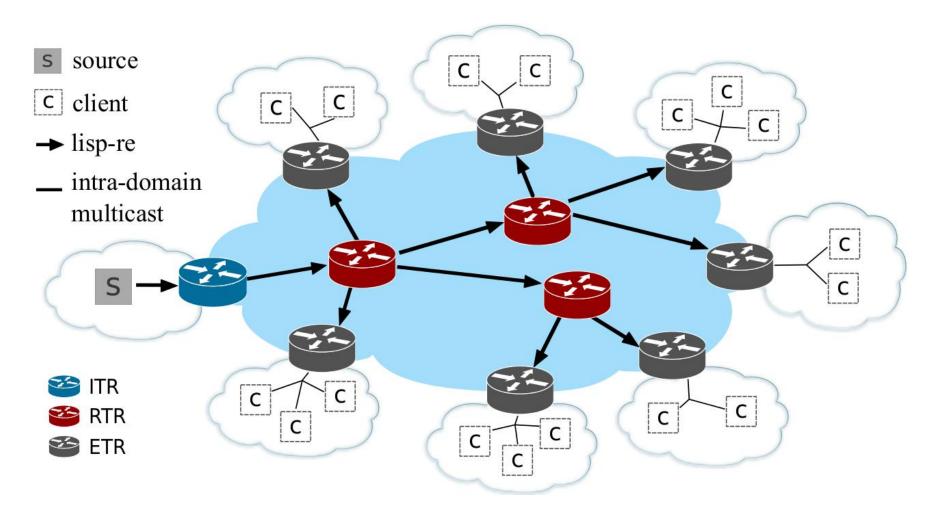
LISP WG, IETF-84, Vancouver

Florin Coras, Albert Cabellos and Jordi Domingo Universitat Politècnica de Catalunya

> Fabio Maino and Dino Farinacci Cisco Systems

Context

- Need multicast for efficient one-to-many packet delivery
- Existing solutions
 - IP-multicast
 - Application layer multicast


LISP and Multicast

- LISP-Multicast assumes the existence of interdomain IP-multicast
- An alternative would be to perform unicast encapsulated replication
 - Scalability is a serious concern due to high headend replication (at the ITR)

LISP Replication Engineering

- Use RTRs to offload the replication load of the ITR
 - Organize RTRs in a distribution tree
 - RTRs perform unicast or multicast RLOC encapsulated replication of EID multicast packets
- Group management functions are centralized in a Distribution Tree Coordinator (DTC)
 - It can either be the ITR or an external orchestration system

Data Plane Architecture

LISP Replication Engineering

- Group management
 - Procedures and objects needed for building (S-EID,G) map-cache state in ITR, RTR and ETR
 - Protocol mechanism used for communication are defined in LISP-Multicast (PIM) and farinacci-lispmr-signaling
- Distribution tree optimization
 - Optimization algorithm
 - Topology discovery

Distribution Tree Management (1)

- LISP Replication Node Database (LRND)
 - Maintained by the DTC per (S-EID,G) channel
 - Stores the state of the distribution tree
 - RLOCs of ITR, RTRs, ETRs
 - **Replication list** that specifies the child list of a member
 - Replication capacity of RTRs (out-of-band signaling)
 - Optionally, more information about the members needed for tree optimizations conveyed by means of out-of-band singnalling

Distribution Tree Management (2)

• Join Procedure

- 1. The joining node sends a Map-Request/Join-Request for (S-EID,G) to the DTC
- 2. If the request is for multicast replication LISP-multicast procedures are followed and no further steps are taken
- 3. If unicast replication is requested, the RTR finds a distribution tree parent for the joining node, either randomly or by using an heuristic.
- 4. The ITR updates the replication list of the selected parent to include the new child.
- 5. The selected parent updates its mapping after it receives an SMR from the ITR and starts replicating content to the newcomer
- 6. DTC Map-Replies with the destination EID-prefix set to (parent-RLOC, ETR-RLOC)

Distribution Tree Management (3)

- In case of graceful member departures
 - For ETR departure, DTC updates parent state
 - For RTR departure, DTC update parent and children state
 - Find new parents for 'orphaned' children
 - Use make-before-break procedure to avoid packet loss
- In case of member failure
 - Detect failure and inform DTC
 - After being informed, the DTC acts like in the event of a graceful departure

Distribution Tree Optimizations

- Optimization Algorithm
 - What it optimizes depends on operational requirements
 - The document provides an algorithm as example
- Topology Discovery
 - Active or passive measurement of the overlay topology
 - Precomputed network maps like the ones provided by iPlane [iplane] and/or out-of-band signaling

Optimization Algorithm (1)

- We set as goal the delivery of delay sensitive content
 - Minimize the distance (latency, AS-hops) between receiver end-hosts and the ITR
- The heuristic builds a spanning tree, starting at root
 - At each step it adds to the tree the member with the smallest distance to the ITR per multicast receiver

Optimization Algorithm (2)

- Simulation Results
 - Control overhead is easily manageable
 - Client churn slightly influences performance
 - Increases management overhead
 - Fan-out influences performance logarithmically
 - Fan-out values larger than 6 offer limited benefits

Still need discussion

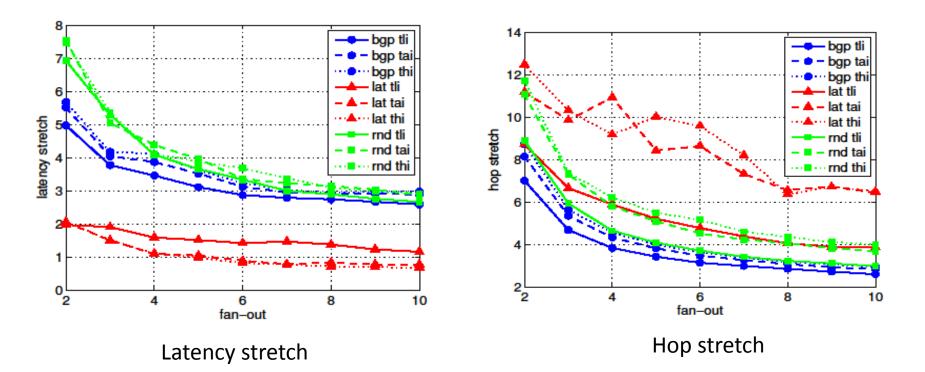
- Topology discovery
 - The choice is administrator dependent but for now we don't have a protocol for conveying active measurements results
- How to use an orchestration system to program the mapping system with ELPs describing the distribution tree topology
- Avoid packet loss when
 - Optimizing the distribution tree
 - Member departs

Questions?

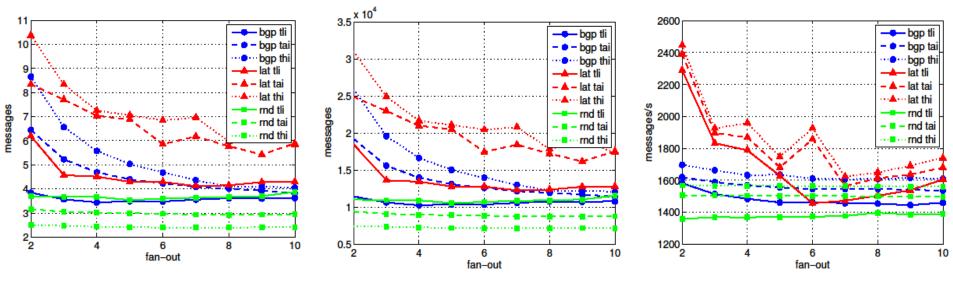
Backup Slides

Evaluation (1)

- ITR simulator that uses an Internet-like AS topology and 3 generated traces of client arrivals and departures
- Internet-like AS topology
 - We aggregated topology information from: CAIDA, RouteViews, RIPE, iPlane
 - Latency information from iPlane


Evaluation (2)

- Generated traces of client arrivals and departures
 - Passively captured P2P TV traces to understand client clustering patterns
 - 146k unique IPs in 3.8k ASes
 - 3 traces of low, average and high client interest in streamed content: tli, tai, thi. They have respectively high, medium and large client churn.
- Topology discovery
 - bgp: ITR makes use of the BGP RIB at the source domain's xTR to infer the number of AS hops between members
 - lat: ITR requests nodes to measure their latencies to a subset of peers according to an heuristic


P2P TV Traces Capture Points

Results (1)

Results (2)

Av number of messages/ETR

Av number of messages/ITR

Peak messages/s for the ITR