
<Insert Picture Here>

Reflections On Client Instance Uniqueness
Chuck Lever
Consulting Member of Technical Staff

IETF 84, Vancouver NFSv4 Working Group

<Insert Picture Here>

Constructing nfs_client_id4

• What is a client instance?

• RFC 3530bis recommendations

• Existing implementation practices

• Better choices

IETF 84, Vancouver NFSv4 Working Group

What Is A Client Instance?

• Boot verifier - nfs_client_id4.verifier
• Unstructured 8-byte value
• Changes across client reboot
• Allows server to distinguish between client reboot and

callback update
• Client string - nfs_client_id4.id

• Opaque array of bytes chosen by client to be unique from all
other clients

• Fixed across client reboot
• Principal used for SETCLIENTID operation

• Authentication flavor plus credential
• Gray area

IETF 84, Vancouver NFSv4 Working Group

RFC 3530bis

• Section 9.1.1 covers client identification
• When boot verifier changes, server cancels client’s

leased state
• Id string

• Unique across all clients
• Fixed across client reboots
• Different for each server address that client accesses
• Don’t assume client’s address is fixed

• Security measure
• Server can’t cancel lease of a subsequent SETCLIENTID with

same ID and new verifier uses a different principal

IETF 84, Vancouver NFSv4 Working Group

RFC 3530bis

• Founder’s intent:
• A client changes the boot verifier only when it reboots
• Each distinct client has one and only one id string
• A client always uses the same principal when sending

SETCLIENTID

IETF 84, Vancouver NFSv4 Working Group

RFC 3530bis

• Recommended contents of id string
• Server’s network address
• Client’s network address
• Possibly a UUID
• Client host’s serial number
• A MAC address
• A fixed timestamp
• A true random number

• How has this worked out for us?

IETF 84, Vancouver NFSv4 Working Group

RFC 3530 Recommendations
Network Addresses

• Client network address in id string
• Clients can share same address if behind a NAT router
• Dynamically assigned client address can change over a

reboot
• Multi-homed client would generate a distinct lease for each of

its network addresses

• Server network address in id string
• Multi-homed server would create separate leases each server

address through which the client accesses it
• UCS clients must use the same string for all servers

IETF 84, Vancouver NFSv4 Working Group

RFC 3530 Recommendations
Authentication

• Server MUST NOT cancel lease if SETCLIENTID
principal doesn’t match original SETCLIENTID
• NFS4ERR_CLID_INUSE is returned
• Does this make principal part of client’s identity?

• Authentication flavor in id string
• Client generates separate lease for each flavor used
• Linux added flavor name to id string until recently

• Using AUTH_SYS with SETCLIENTID
• Most clients use { UID 0, GID 0 }
• Server not likely to catch reuse by other clients
• Server could examine machine name part of credential, but

still no guarantee of uniqueness

IETF 84, Vancouver NFSv4 Working Group

RFC 3530 Recommendations
Hardware Serial Number

• MAC address in id string
• Client with multiple NICs used serially (e.g. wifi, wired)
• Client with multiple NICs used concurrently (e.g. multi-homed)
• OS initialization order of NICs is indeterminant
• Virtualized clients may get re-used MAC addresses

• Machine serial number
• Aside from privacy concerns...
• Most hardware platforms do not have a unique hardware

identifier

IETF 84, Vancouver NFSv4 Working Group

RFC 3530 Recommendations
Additional Uniqueness

• UUID in id string
• A Type 1 UUID is a MAC address and a time stamp
• A random-variant UUID would have to be stored somewhere

on the client, but is suitably unique

• Client hostname in id string
• Nothing stops administrators from assigning same hostname

• Especially challenging if non-FQDN are chosen
• Hostnames often dynamically assigned, thus not fixed across

reboots
• Usually client hostname is “good enough,” until it isn’t

IETF 84, Vancouver NFSv4 Working Group

Good Practices

• Some servers use source address of SETCLIENTID
or SETCLIENTID_CONFIRM to detect distinct clients
using the same id string
• Servers should use only the arguments of these operations,

not transport addresses
• Linux server is known to do this, fixed recently

IETF 84, Vancouver NFSv4 Working Group

Good Practices

• Some servers use id strings to keep leases sorted
after a cluster take over
• Allows an orderly give back, but
• This design relies on clients using a distinct string for each

server they access
• Not compatible with UCS approach, needed to support

Transparent State Migration
• SunStorage is known to do this

IETF 84, Vancouver NFSv4 Working Group

Good Practices

• Some clients use a unique id string for each mount
point
• Servers must maintain more leases
• Client must store these strings permanently to permit proper

state recovery
• Intent of RFC 3530 was for each client to use the same id

string for all of its mount points
• FreeBSD is known to do this

IETF 84, Vancouver NFSv4 Working Group

Good Practices

• Updating nfs_client_id4.verifier
• RFC 3530 does not require a client’s boot verifier to remain

unchanged during a single client restart
• Servers generally do not check for a verifier replay
• Server uses boot verifier to prevent loss of leased state

during a callback update
• Some clients change the boot verifier on the next mount after

the last mount of a server is gone
• A client can use a boot verifier change to force a server to

remove its leased state
• Linux client is known to do these last two

IETF 84, Vancouver NFSv4 Working Group

Good Practices

• Virtualization

• Virtualized NFSv4 clients running on the same physical host
should use distinct id strings and boot verifiers

• Virtualized NFSv4 servers running on the same physical host
should behave as independent server instances
• Maintain separate clientid4 spaces
• Maintain separate leases for a particular client

IETF 84, Vancouver NFSv4 Working Group

An Example: Linux Client

• Non-uniform
• Traditional, now default for NFSv4.0
• Allows compatibility with existing NFSv4.0 servers
• Server IP address, client IP address, callback netid

• Uniform
• Default for NFSv4.1, allowed for NFSv4.0 with migration
• “Linux,” NFS version, then a uniquifier

• uniquifier is normally client’s nodename
• A replacement can be specified on boot command line

• Can be stored by GRUB or provided via DHCP boot
• Might be a UUID generated during client installation

IETF 84, Vancouver NFSv4 Working Group

An Example: Linux Client

• Traditional boot verifier
• 64-bit time stamp stored in per-lease data structure
• Regenerated on next mount when last mount of a server goes

away
• New boot verifier

• 64-bit time stamp stored per container
• Regenerated when container is created (typically once per

boot)
• Special NFSv4.1 behavior when a STATE_REVOKED

sequence flag is asserted
• EXCHANGE_ID presents an impossible time stamp
• Second EXCHANGE_ID presents original verifier

