
<Insert Picture Here>

End-to-end Data Integrity for NFS
Chuck Lever
Consulting Member of Technical Staff



IETF 84, Vancouver NFSv4 Working Group

<Insert Picture Here>

Today’s Discussion

• What is end-to-end data integrity? 

• T10 PI overview

• Adapting T10 PI for byte-stream files

• Provisional feature requirements

• Protocol considerations



IETF 84, Vancouver NFSv4 Working Group

End-to-end Data Integrity Protection

• Prevent the storage or use of corrupted data

• “Protection Information” allows detection and/or correction of 
data corruption (e.g., CRC)

• Application provides PI, which is stored with data on 
permanent storage
• Storage stack generates PI if application does not provide

• Data integrity can be verified at every node in I/O path during 
both writes and reads



IETF 84, Vancouver NFSv4 Working Group

T10 PI Overview

• Defined in T10 SBC-2 and enhanced in SBC-3
• Data integrity for block storage
• “Type 1” defines contents of eight bytes of PI for every 

logical block
• 16-bit CRC
• 16-bit application tag
• 32-bit reference tag (low order 32-bits of LBA)

• This is an open standard: allows any node in I/O path 
to verify that data and PI match



IETF 84, Vancouver NFSv4 Working Group

Data Integrity eXtensions

• Proposed by Oracle, not a standard
• T10 PI protects path between O/S buffer and block 

storage
• DIX extends protection up to applications
• Data and PI specified in separate buffers
• A lower-overhead guard tag is used
• Still block-oriented



IETF 84, Vancouver NFSv4 Working Group

Protecting Byte-Stream Files

• What API do applications use to specify reads and 
writes with accompanying PI?

• How is integrity of memory mapped data protected?

• Can an advanced file system store protected and 
unprotected data in the same volume?

• How does an advanced file system treat replicated 
blocks (snapshots or de-duplication)?



Protecting Byte-Stream Files
Application API

• Applications form the PI and submit it with the data
• Apps need to know which protection mechanism is in use

• Protected reads and writes are logical block-aligned
• Apps need to know size of logical block

• PI can be specified via ioctl(), scatter/gather, or other 
separate system call

• Data integrity failure can be reported via new errno
• Application knows to employ a special system call to retrieve 

extended information



Protecting Byte-Stream Files
Advanced File System considerations

• File systems may alter application-specified PI during 
I/O on complex device types (e.g., RAID)
• But, all devices backing an FS use same protection type

• All files on a particular volume are either protected or 
unprotected
• Applications may choose not to supply PI; file system can 

generate it appropriately

• File system may choose to protect blocks storing its 
metadata



Protecting Byte-Stream Files
NFS client considerations

• Clients need to know which protection mechanism is 
in use on each FSID on a server
• Can then advertise this to local applications

• Clients can use integrity-protecting transports along 
with PI

• Need to protect against write-re-ordering due to 
network or server instability



IETF 84, Vancouver NFSv4 Working Group

Provisional Feature Requirements

• End-to-end
• Must allow protection from application write to read
• Must permit verification at all nodes in path
• Like RPCSEC, MUST implement, but deployment optional
• File system operation must appear the same whether or not 

application is using or is even aware of data integrity

• Based on existing data integrity standards
• IETF has no purview over physical storage
• Better adoption if we expose existing standards on wire
• Open standard means every node can participate



IETF 84, Vancouver NFSv4 Working Group

Provisional Feature Requirements

• Allow co-existence with other mechanisms
• Should not interfere with serial or concurrent use of other data 

integrity verification mechanisms
• Extensible: we want to allow other types of data protection
• Mechanism must not interfere with access to data that is not 

protected by an end-to-end data integrity mechanism

• Agnostic to access method
• Should work with any layout type
• Non-pNFS access should also work
• Should allow local access on file server, if appropriate



IETF 84, Vancouver NFSv4 Working Group

Provisional Feature Requirements

• Agnostic to server file system
• No mandate for how a server’s file system supports data 

integrity protection, only how it looks to NFS clients

• Protection for NFS metadata operations not 
mandatory
• So far I have not considered metadata operation protection
• Partially accomplished using an integrity-protecting transport

• Minimal performance impact
• We know there will be some, let’s try to keep it minimal



Protecting NFS Files
Example Protection Envelopes

• NFS server-only
• Server does not advertise data integrity capabilities
• Or client does not utilize data integrity capabilities
• Data integrity failures appear to client as I/O errors

• NFS client-server
• Client uses data integrity capability when communicating with 

server
• Client does not advertise capability to applications
• Client can accesses extended failure data, but apps can’t

• Application-client-server
• Application can use data integrity on some or all of its files
• Application can extract extended integrity failure data



Protecting NFS Files
Detecting Protection Types

• Server advertises protection type in use for an FSID
• Can introduce a GETATTR per-filesystem attribute
• Protection type MUST NOT change during FSID’s lifetime
• FSIDs can use different protection types
• Not all FSIDs protected

• Pseudo-root
• FedFS domain root

• Client advertises FSIDs protection type to applications
• Applications may not use data integrity protection
• Clients can choose not to use it, or generate it themselves



Protecting NFS Files
Possibilities for Reading and Writing PI

• New operations included in same compound as 
READ_PLUS, WRITE, or INITIALIZE
• Works like GETATTR

• New enumerators for NFS4_DATA_CONTENT

• New arguments to READ_PLUS, WRITE, INITIALIZE

• New pNFS layout types



Protecting NFS Files
Asynchronicity

• Disk I/O can fail after a WRITE(UNSTABLE) operation 
completes
• Failure MUST be reported at COMMIT time
• Client then retries failing WRITE(UNSTABLE) via a 

WRITE(FILE_SYNC) to gather extended information about 
the failure

• Disk I/O can occur well before client reads data, due 
to server-side pre-fetch
• Failure MUST be reported when specific block is read, not 

before



Protecting NFS Files
Generating PI

• T10 type 1 protection data
• Application tag: Arbitrary or blank
• Guard tag: 16-bit CRC
• Reference tag: Lowest 32-bits of LBA
• Protection envelope: I/O controller to block device 

• Possible NFS protection data
• Application tag: Arbitrary or blank
• Guard tag: IP checksum
• Reference tag: Middle 32-bits of file offset
• Protection envelope: Application to NFS server



Protecting NFS Files
Reporting and Interpreting Failures

• T10 Type 1 failure report
• Which tag failed to verify correctly
• LBA of failure
• Reporting node in I/O path

• Possible NFS failure report
• Which tag failed to verify correctly
• File offset of failure
• Reporting layer

• May be virtualized for simplicity



Protecting NFS Files
Multi-server Considerations

• Each DS participating in a layout MUST use the same 
protection type

• Each replica of an FSID listed in fs-locations MUST 
use the same protection type

• Destination server MUST support the same protection 
type as Source server
• And, an FSID after migration MUST use the same protection 

type it was using before



IETF 84, Vancouver NFSv4 Working Group

Forthcoming Personal Draft

• Propose an architecture for end-to-end byte-stream 
data integrity protection based on T10 PI

• Enumerate and justify high-level requirements for 
NFS data integrity

• Provide enough meat to allow prototype 
implementations



IETF 84, Vancouver NFSv4 Working Group

Next Steps

• Complete and publish requirements document

• Build a prototype or two

• Consider support for other types of data integrity 
protection
• Lustre
• Native ZFS checksums


