
IETF Security Architecture Update

IETF 84

Eric Rescorla

ekr@rtfm.com

IETF 84 RTCWEB Security Architecture 1



Overview

• Draft update

• Identity origin indication

• Consent freshness and ICE

IETF 84 RTCWEB Security Architecture 2



Reviews

• Three reviews from Dan Druta, Richard Ejzack, Martin Thomson

(on -01/-02)

– Your name here?

– Thanks!

• A few substantive issues and a lot of editorial ones

• Believe I have folded in all their comments

IETF 84 RTCWEB Security Architecture 3



Changes since -02

• Forbid persistent HTTP permissions.

• Clarified that IP Location Privacy is intended as protection against

the other sides, not the site (S 5.4)

• Fold in the IETF portion of

draft-rescorla-rtcweb-generic-idp

• Retarget the continuing consent section to assume Binding

Requests (more on this shortly)

IETF 84 RTCWEB Security Architecture 4



IP Location Privacy

“A side effect of the default ICE behavior is that the peer learns

one’s IP address, which leaks large amounts of location

information, especially for mobile devices. This has negative

privacy consequences in some circumstances. The following two

API requirements in this section are intended to mitigate this issue:

issue. Note that these requirements are NOT intended to protect

the user’s IP address from a malicious site. In general, the site will

learn at least a user’s server reflexive address from any HTTP

transaction. Rather, these requirements are intended to allow a site

to cooperate with the user to hide the user’s IP address from the

other side of the call. Hiding the user’s IP address from the server

requires some sort of explicit privacy preserving mechanism on the

client (e.g., Torbutton [https://www.torproject.org/torbutton/])

and is out of scope for this specification.” (S 5.4)

IETF 84 RTCWEB Security Architecture 5



Identity Origin Detection

• Issue raised in discussions with W3C people

• A correct IdP identity assertion needs to be bound to the

PeerConnection

– Otherwise malicious JS could instantiate the IdP proxy and get

their own assertion

• Currently this requirement is levied on the IdP

– postMessage() messages must come from an origin starting

with rtcweb://

– Which can’t be reproduced by ordinary content

• This works but is not very flexible

– And is a pain for the IdP

IETF 84 RTCWEB Security Architecture 6



Proposed change

• Move verification from IdP to the PeerConnection (RP)

• Require assertions to carry an requesting_origin field

– Contains the origin of the postMessage() message

– In this case would be rtcweb://peerconnection [TBD]

• This would be passed to the receiving PeerConnection by the IdP

• Checked by the receiving PeerConnection

– Which would enforce the right value

IETF 84 RTCWEB Security Architecture 7



Example

{

"type":"SUCCESS",

"id":1,

"message": {

"idp":{

"domain": "example.org"

"protocol": "bogus"

},

"requesting_origin" : "rtcweb://peerconnection", // NEW

"assertion": "..." // opaque

}

}

IETF 84 RTCWEB Security Architecture 8



Communications Consent Overview

• Consensus to use ICE for initial consent

– Sufficient for prevention of cross-protocol attack

– Not so great protection against packet-based DoS

• Open issues

– Binding Request versus new STUN method for continuing

consent

– Timer settings

– Should we limit sender rate?

– What about simulated forking?

IETF 84 RTCWEB Security Architecture 9



Consent Freshness

• As specified, ICE only checks at start of session

• Keepalives just keep the NAT binding open

– But aren’t confirmed

– Or authenticated

• What if I no longer wish to receive traffic?

– General agreement, some sort of keepalive

– Check every X seconds

– If I don’t receive a keepalive after Y seconds must stop

transmitting

∗ Can re-start ICE if needed

IETF 84 RTCWEB Security Architecture 10



What method to use?

• draft-muthu-01 Defines a new ICE method

– Simple request/response

– No username/password or message integrity

• Why not just use STUN binding Request?

– Binding requests require integrity checks

“One of the reasons for ICE choosing STUN Binding

indications for keepalives is because Binding indication allows

integrity to be disabled, allowing for better performance. This

is useful for large- scale endpoints, such as PSTN gateways

and SBCs as described in Appendix B section B.10 of the ICE

specification.”

IETF 84 RTCWEB Security Architecture 11



Is a MAC needed?

• ICE Binding Requests are authenticated with a MAC

– Based on ufrag and password

• Consent as currently specified does not have a MAC

– All security is from the 96-bit STUN transaction ID

– ... must be pseudorandomly generated

– This is plenty of security against an off-path attacker

• Without MAC, on-path attacker can simulate consent even if the

victim is not responding

– MAC requires attacker to have username and password as well

• Not clear if there is a concrete attack that requires MAC

IETF 84 RTCWEB Security Architecture 12



... But

• ICE implementations already need to implement Binding Requests

“Though Binding Indications are used for keepalives, an agent

MUST be prepared to receive a connectivity check as well. If

a connectivity check is received, a response is generated as

discussed in [RFC5389], but there is no impact on ICE

processing otherwise.” [RFC 5245; Section 10]

• So Binding Requests will work better with non-RTCWEB

equipment

IETF 84 RTCWEB Security Architecture 13



Duration of Unwanted Traffic/Timer Settings

• Assume we have initial consent and we re-check every Tc seconds

– On average next check will be at Tc/2 (worst case Tc)

• With RFC 5389 parameters, a transaction fails after 39500 ms

– This seems awful long

• Consensus at interim to shorten these parameters

– This is just a profile of ICE parameters

IETF 84 RTCWEB Security Architecture 14



Shorter STUN timers

• RFC 5389 has configurable values Rc,Rm

• Proposal: Rc = 5, Rm = 4. Use measured RTO, minimum

200ms

• Example: Packets transmitted at 0, 200, 600, 1400, 3000;

transaction fails at 4600ms

• Rationale

– If our RTT is > 5s, that’s not going to be a very good user

experience

IETF 84 RTCWEB Security Architecture 15



A related problem: liveness testing

• Applications want to detect connection failure

– This needs to happen on a shorter time scale than consent

– How much dead air will people tolerate? (< 5seconds)

• Proposal: configurable minimal received traffic spacing

– If no packet is received in that time, send a Binding Request

– Application failure signaled on Binding Request failure

IETF 84 RTCWEB Security Architecture 16



Why not RTCP for liveness?

• We want to do liveness testing for non-RTCWEB peers

– Regrettably some of these do not do RTCP

• Design goal: get liveness without help of other side

– So just RTCP isn’t enough

– But is counted as part of traffic spacing

IETF 84 RTCWEB Security Architecture 17



Combined Consent/Liveness

Both checks done via binding requests

• Consent timer: Tc (default = 20s, no more than 30s)

• Packet receipt timer: Tr (no less than 500ms); configurable

• When either timer expires start a STUN transaction

• When a STUN transaction succeeds, re-start both timers

• When a STUN transaction fails

– If transaction was started by Tc, stop sending, abort

– ... else, notify application of failure, but keep sending

• Tr is also reset by receiving any packet from the other side

• This is what is in current draft-muthu-01

IETF 84 RTCWEB Security Architecture 18



What API points do we need?

• Ability to set keepalive frequency (individually on each stream?)

• A consent transaction has failed and so I am not transmitting on

stream M

• A liveness check has failed on stream M

IETF 84 RTCWEB Security Architecture 19



Proposed API

// Do a liveness check every 500ms and call callback if it fails

pc.setLivenessCheck(500, m, function(m) {

// media stream m has apparently failed

});

//

pc.onstreamfailed = function(m) {

// media steam consent check has failed

}

• Would a constraint + event combination be better?

IETF 84 RTCWEB Security Architecture 20



DoS via Excessive Traffic [Thomson and others]

IETF 84 RTCWEB Security Architecture 21



Why does this work?

• ICE only verifies connectivity

– But anything can be sent over that channel

• SDP parameters are under the control of the attacker

– And that is what controls bit rate

IETF 84 RTCWEB Security Architecture 22



No user consent required (?)

• We just need a source of high bandwidth data

– We (probably) can’t use a datachannel because it’s congestion

controlled

– And the sequence numbers are unpredictable (allegedly)

• But media probably is not

• It’s not video that requires user consent

– ... but access to the camera

• Set up a bogus MediaStream blob that generates continuous

patterns

– Use it to source the data

– This shouldn’t trigger consent dialogs

IETF 84 RTCWEB Security Architecture 23



How serious is this issue?

• Basically another version of voice hammer

• Short duration

– If we have consent freshness then < 1 minute

• But very scalable

– I can mount this using an ad network or any other traffic

fishing system

– No user consent required

– Not self-throttling (unlike HTTP-based attacks)

IETF 84 RTCWEB Security Architecture 24



Defenses against bandwidth attacks

• Bandwidth indications in the SDP

– This won’t work

– Attacker controls the SDP

• Bandwidth indications in ICE checks

– This will work

– How do we deal with non-RTCWEB peers?

∗ Assume infinite bandwidth?

∗ Assume finite bandwidth? If so, what?

– Arguably this is overkill

• Proposal: Live with it between consent checks

IETF 84 RTCWEB Security Architecture 25



Simulated Forking [Westerlund]

IETF 84 RTCWEB Security Architecture 26



Proposed Solutions

• Rate limit the number of outstanding ICE connections you

respond to?

– Based on unique ufrag/passwords

• If using DTLS you can rate limit the number of DTLS associations

– Not clear that this is better than ICE

• Proposal: guidance to servers on rate limiting

IETF 84 RTCWEB Security Architecture 27


