
TCP and SCTP RTO Restart���
���

draft-hurtig-tcpm-rtorestart-02	

Michael Welzl	

michawe@ifi.uio.no	

1	

Motivation	

•  In some cases TCP/SCTP must use RTO for

loss recovery	

–  e.g., if a connection has 2 outstanding packets and 1 is lost	

•  Some solutions exist, but they are not always
applicable	

– Limited Transmit (RFC 3042)	

•  requires: unsent data, no ack loss	

– Early Retransmit (RFC 5827)	

•  requires: 2 outstanding segments, no ack loss, no
reordering	

2	

Motivation	

•  Thus, some flows have to use

RTO for loss recovery	

•  However, the effective RTO often

becomes RTO = RTO + t	

–  Where t ≈ RTT [+delACK]	

•  The reason is that the timer is
restarted on each incoming ACK
(RFC 6298, RFC 4960)	

Sender	

 Receiver	

RTO Restart	

RTO	

t	

3	

Impact	

•  Standard approach no problem when
congestion window is large	

•  Actually, it can be beneficial	

–  lower risk for spurious RTOs	

– gives FR more time to detect loss	

•  smaller congestion window reduction using FR	

•  This is not the case for short-lived/thin flows	

– congestion window low anyhow	

4	

TCP and SCTP RTO Restart	

•  To allow retransmissions after exactly RTO
seconds, the timer is restarted as:	

– RTO = RTO - t	

•  The modified restart is only used when	

–  the number of outstanding segments < 4;	

– and there is no unsent data ready for transmission. 	

•  Thus, only flows incapable of FR can use the
modified RTO restart	

5	

Faster Recovery Needed?	

•  One extra RTT could lead to performance problems

for short-lived (e.g. web) and thin streams	

–  Thin streams are flows that only use a fraction of the available bandwidth

(e.g. signaling, online games, chat, VoIP, …)	

–  IETF 78: http://www.ietf.org/proceedings/78/slides/iccrg-4.pdf	

•  Example: Anarchy Online [1]	

–  Approx. 1% packet loss	

–  Most loss recovered using RTOs	

–  Maximum tolerable latency���

about 500 msec [2]	

6	

[1] A. Petlund, P. Halvorsen, P. F. Hansen, T. Lindgren, R. Casais, C. Griwodz "Network Traffic from Anarchy Online: Analysis, Statistics and
Applications”, In Proc of ACM MMSys, February 2012.	

[2] M. Claypool and K. Claypool, “Latency and Player Actions in Online Games”, In Communications of the ACM, November 2006.	

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3

Fr
ac

. o
f r

et
ra

ns
m

is
si

on
s

Loss recovery latency (s)

RTO
RTO-RTT

Performance	

•  Initial simulations	

–  Ns-3 (with real Linux TCP)	

–  Short-lived flows	

–  Multiple clients served by one

host	

–  Large set of bw’s and delays	

•  Results show that	

–  Loss recovery times are reduced

with approximately 1 RTT on
average	

–  The amount of spurious RTOs is
slightly higher than for regular TCP
(<1% more)	

•  New experiments underway	

–  Congestion losses	

–  New RTO management alg.	

–  To investigate burst situations more

thoroughly	

7	

Results from 200 concurrent flows with 100 ms RTT	

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20
Lo

ss
 re

co
ve

ry
 ti

m
e

(s
)

Loss rate (%)

Modified RTO
Standard RTO

Changes between -01 and -02	

•  Smaller text changes	

•  No longer a requirement to store the

transmission time of each segment	

– Sufficient to “remember” only the last four 	

8	

Open issues and possible solutions	

•  Increased aggressiveness	

– Might trigger spurious RTOs when bursts are sent	

•  Possible mitigations	

– Careful version of the algorithm	

•  Disables modified restart during bursty transmission	

– noRestart approach (suggested by Mark Allman)	

•  Don’t restart the timer if no data is available for
transmission and less than four segments is outstanding	

•  Same effect as modified restart for small windows	

•  More conservative for larger windows	

9	

