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Motivation	

•  In some cases TCP/SCTP must use RTO for 

loss recovery	

–  e.g., if a connection has 2 outstanding packets and 1 is lost	


•  Some solutions exist, but they are not always 
applicable	

– Limited Transmit (RFC 3042)	


•  requires: unsent data, no ack loss	

– Early Retransmit (RFC 5827)	


•  requires: 2 outstanding segments, no ack loss, no 
reordering	
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Motivation	

•  Thus, some flows have to use 

RTO for loss recovery	

•  However, the effective RTO often 

becomes RTO = RTO + t	

–  Where t ≈ RTT [+delACK]	


•  The reason is that the timer is 
restarted on each incoming ACK 
(RFC 6298, RFC 4960)	
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Impact	


•  Standard approach no problem when 
congestion window is large	


•  Actually, it can be beneficial	

–  lower risk for spurious RTOs	

– gives FR more time to detect loss	


•  smaller congestion window reduction using FR	


•  This is not the case for short-lived/thin flows	

– congestion window low anyhow	
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TCP and SCTP RTO Restart	


•  To allow retransmissions after exactly RTO 
seconds, the timer is restarted as:	

– RTO = RTO - t	


•  The modified restart is only used when	

–  the number of outstanding segments < 4;	

– and there is no unsent data ready for transmission. 	


•  Thus, only flows incapable of FR can use the 
modified RTO restart	
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Faster Recovery Needed?	

•  One extra RTT could lead to performance problems 

for short-lived (e.g. web) and thin streams	

–  Thin streams are flows that only use a fraction of the available bandwidth 

(e.g. signaling, online games, chat, VoIP, …)	

–  IETF 78: http://www.ietf.org/proceedings/78/slides/iccrg-4.pdf	


•  Example: Anarchy Online [1]	

–  Approx. 1% packet loss	

–  Most loss recovered using RTOs	

–  Maximum tolerable latency���

about 500 msec [2]	
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Performance	

•  Initial simulations	


–  Ns-3 (with real Linux TCP)	

–  Short-lived flows	

–  Multiple clients served by one 

host	

–  Large set of bw’s and delays	


•  Results show that	

–  Loss recovery times are reduced 

with approximately 1 RTT on 
average	


–  The amount of spurious RTOs is 
slightly higher than for regular TCP 
(<1% more)	


•  New experiments underway	

–  Congestion losses	

–  New RTO management alg.	

–  To investigate burst situations more 

thoroughly	
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Results from 200 concurrent flows with 100 ms RTT	
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Changes between -01 and -02	


•  Smaller text changes	

•  No longer a requirement to store the 

transmission time of each segment	

– Sufficient to “remember” only the last four 	
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Open issues and possible solutions	

•  Increased aggressiveness	

– Might trigger spurious RTOs when bursts are sent	


•  Possible mitigations	

– Careful version of the algorithm	


•  Disables modified restart during bursty transmission	

– noRestart approach (suggested by Mark Allman)	


•  Don’t restart the timer if no data is available for 
transmission and less than four segments is outstanding	

•  Same effect as modified restart for small windows	

•  More conservative for larger windows	
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