
Safety against
Clickjacking / UI Redressing

Attacks

Brad Hill <bhill {at} paypal-inc.com>

Jeff Hodges <jeff.hodges {at} kingsmountain.com>

Clickjacking / UI Redressing

 A web application can induce the web user
agent to include, frame or embed another
application from a different security domain.

 In so doing, it may be able to convince the user
to interact with the nested application out-of-
context, by obscuring or modifying the nested
application’s presentation to the user.

Two types of cross-origin mixing:

–Transclusion: OUT OF SCOPE
inlined content which becomes part of the same web
security principal (img, font, etc.)

–Framing / Embedding: IN SCOPE
distinct browsing contexts, with different security principals
(origins) and enforced security boundaries (iframe, plugins)

Attacks arise due to incomplete isolation at the User
Interface (presentation) layer

Difficult problem to solve

•User Interface context mixing is by design and a
desirable property of the web user agent

–Except when it isn’t

•No unambiguous fixes possible at the protocol
or browsing context security model

•Diversity of user agent / user interface features:
–Modal vs. multi-window, mouse vs. touch, voice or
assistive technologies

(legacy) X-Frame-Options Header

•DENY, SAMEORIGIN, [ALLOW-FROM]
–All-or-nothing

• Use cases which require framing cannot use
this policy (e.g. like, +1)

•But..
–Application authors need more granularity:

• Allow, and apply protections if possible

• Only allow if possible to apply protections
• Report, don’t block, if things look suspicious

“UI Safety” spec in WebAppSec WG

http://dvcs.w3.org/hg/user-interface-safety/raw-
file/tip/user-interface-safety.html

• Use Content Security Policy header to convey
UI policy and tuning hints to the user agent

•Non-normative recommendations on how to
apply such recommendations at the user agent

–Screenshot comparisons to detect overlays,
repositioned content
–Click timing measurements
–Etc.

http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
http://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html

From the web application provider's
perspective, “frame options” and UI Safety are
part of a single risk management policy around
how the web user agent manages the
application’s user interface.

Going forward, it may make the most sense to
define both policy pieces in the same spec.

“UI Safety” spec @ W3C
WebAppSec WG

Advantages to moving “frame
options” features to CSP UI Safety

specification:

If “frame options” going forward is moved to CSP UI Safety,

app authors can write one policy to express all

framing/embedding requirements, and optionally supply an

XFO policy for legacy user agents.

If moved to a “FRAME-OPTIONS” header, app authors

must always explicitly think about policy combination logic

across two different specifications, defined in slightly

different terms.

Simplify policy combination

Single conveyance mechanism may
give broader adoption

•“frame options” policies really are associated with the
web application user interface, not the underlying
network protocol

•Chrome extensions “application manifest” already has
a way to set a Content Security Policy

–App manifest would require enhancement to do
same for a separately expressed “frame options”
notion

•Widgets, app cache, etc.
–All could have a mechanism to attach or persist “frame
options” and CSP, but easier to just do one

“Frame options” features can take
advantage of CSP features

• CSP specifies a reporting channel and is
developing a DOM API

–Application authors may wish to use these for risk
management with the “frame options” features

• Re-use CSP expression of origin
–Likely source of error to require authors to
continue to use legacy XFO origin syntax and CSP's,
as well as two headers to express one intention

