Transmission of IPv6 Extension Headers

draft-carpenter-6man-ext-transmit-00

Brian Carpenter Sheng Jiang

IETF 85 November 2012

Motivation

- It is known that the Internet is not transparent to some IPv6 extension headers.
- That is partly due to defects in the IPv6 specifications.
- 6man can fix this part of the problem.

The trouble with RFC 2460

- To allow for new extension headers, RFC 2460 says:
- "...extension headers are not examined or processed by any node along a packet's delivery path, until the packet reaches the... Destination Address"
- However, some firewalls treat unknown extension header types as suspect and drop packets containing them.
 - This especially, but not exclusively, affects extension headers defined since RFC 2460

What we can't do (in 6man)

 We can't prevent firewalls and other middleboxes from performing deep packet inspection and sometimes breaking connectivity.

What we can do

Clarify the specifications to minimise breakage.

Steps to take

- Define a uniform format for future extension headers (Done by RFC 6564)
- Clarify that the RFC 2460 requirement applies to all extension headers (this draft)
 - Document the problem
 - Make some changes to normative language
 - Enumerate the current list of extension headers
- Properly document the list of extension headers for the future (IANA)
 - At the moment there is no definitive list

Requirement to handle Hop-by-Hop options

- The Hop-by-Hop Options header SHOULD be processed by intermediate nodes as in [RFC2460].
- However, designers are warned that some routers will ignore it, or put it on a slow path.

Requirement to transmit other extension headers

- Any node that forwards IPv6 packets SHOULD do so regardless of extension headers.
- Exceptionally, if a node is designed to examine extension headers, e.g. for firewalling, it MUST recognise all valid IPv6 extension header types.
- If a firewall discards a packet containing a valid IPv6 extension header, it MUST be due to an explicit firewall policy, and not just the result of failing to recognise the header.

IANA Considerations

- IANA is requested to replace the empty IPv6 Next Header Types registry by an IPv6 Extension Header Types registry, subsidiary to the existing Protocol Numbers registry.
 - It will contain only those protocol numbers which are also IPv6 Extension Header types.
- Future IPv6 Extension Header types will be added to this registry as well as the Protocol Numbers registry.

Current values

- 0, Hop-by-Hop Options, [RFC2460]
- 43, Routing, [RFC2460], [RFC5095]
- 44, Fragment, [RFC2460]
- 50, Encapsulating Security Payload, [RFC4303]
- 51, Authentication, [RFC4302]
- 58, ICMPv6, [RFC2460]
- 59, No Next Header, [RFC2460]
- 60, Destination Options, [RFC2460]
- 135, MIPv6, [RFC6275]
- 139, HIP, [RFC5201]
- 140, shim6, [RFC5533]

Questions? Discussion?

• Does 6man want to work on this topic?