Efficiency-aware IPv6 Neighbor Discovery Optimizations

draft-chakrabarti-nordmark-6man-efficient-nd-00 [Earlier draft-chakrabarti-nordmark-energy-aware-nd-02.txt]

> Samita Chakrabarti (Samita.chakrabarti@ericsson.com) Erik Nordmark (nordmark@cisco.com) Margaret Wasserman (mrw@lilacgrade.org)

Summary

- Leverages 6lowpan-nd [RFC 6775] for general IPv6 links
 - No periodic multicast RA
 - Replaces DAD with Address Registration Option [ARO]
 - No multicast NS messages
 - Host-driven refresh of RA information unicast RS to refresh
- Adds support for mixed-mode links
 - Combining RFC 4861 and efficiency-aware nodes on same link
 - Defines a new E-bit in the RA so hosts know the efficiency-aware routers
- Allows for sleeping hosts
 - ARO is used to check for duplicates at the router
- ND host scan attack removed/reduced
 - As more hosts use ARO the rate limit for sending multicast NS can be reduced reaching zero when all hosts on link use ARO

Recent changes

- Changes from draft-chakrabarti-nordmark-energy-awarend-02
 - Replaced "energy-aware" with "efficiency-aware" which covers both energy efficiency and other operational efficiency
 - Added consideration for DNA and clarified that this is useful for networks with MLD-snooping switches as well
 - Added use-cases, Support for Mixed-mode operations and a diagram for bootstrapping scenario.
 - Clarified its applicability when DHCP is used for address allocation.
- 6lowpan-nd approved as an RFC

Basic Ideas

RFC 4861 ND

Proposed Optimizations

Address Registration [RFC 6775]

- Address Registration Option (ARO) is sent by the efficiency-aware hosts in a unicast NS message
- Can be combined on NUD probes to verify router reachability

Terminology

- ND efficiency-aware Router (NEAR)
 - Specified in this document
- Efficiency-Aware Host (EAH)
 - Ditto
- Legacy router
 - RFC 4861
- Legacy host
 - Ditto

Mixed-Mode Operation

- efficiency-aware Router and legacy IPv6 hosts along with efficiency-aware IPv6 hosts
- Legacy Router and efficiency-aware hosts

Efficiency-Aware IPv6 Node

NEAR and EAH in Mixed-Mode

NEAR

- Sends periodic RAs for legacy hosts
- Supports ARO for EAH
- Advertises E-bit in RA
- Manages both Registered NCE entries and Legacy entries
- SHOULD have configuration knobs for Mixed vs. Efficiency-aware-only mode
- Recommended default mode for NEAR is Mixed-Mode
- NEAR MUST NOT set 'L' bit in RA

EAH

- First sends Multicast RS to the link to detect presence of NEAR if it did not hear a RA with E-bit upon joining the network already
- If it hears from both NEAR and legacy IPv6 Router, the NEAR(s) gets preference as a default router(s)
- Registers with more than one NEAR (if multiple are available)
- Efficiency-aware hosts SHOULD de-register before it moves away or switches to legacy mode

Mixed-mode

- Legacy host multicasts DAD probe
 - In mixed mode, NEAR proxies based on registered NCEs
- Legacy host sends data packet to any router since L=0
 - Legacy router would multicast NS
 - NEAR would proxy with an NA based on registered NCEs
 - [Alternative is to require that a mixed link has only NEAR routers]
- EAH uses ARO for DAD
 - In mixed mode, NEAR should multicast DAD probe before ack'ing ARO

Interaction

• Detecting Network Attachment (DNA)

- Orthogonal
- DNA sends a unicast NS to previously know router(s)
- That can now include an ARO
- DNA also sends a multicast RS (in case moved to new link)
- Same as a regular RS/RA on power-on
- DHCPv6
 - ARO is used for link-local address
 - DHCPv6 client SHOULD check DAD for assigned address. If ARO is available use that instead of multicast DAD probe
- Secure ND
 - RFC 37971 recommends allowing un-secured DAD on first try
 - Allows for NEAR to proxy DAD respose
- MLD snooping
 - No use of solicited-node multicasts means less MLD snooping state

Open Issues

- 6lowpan-nd has a "SHOULD NOT" for sending redirects
 - To avoid hidden terminal issues in radio networks
- On general IPv6 links redirects are useful
 - Avoids sending all packets via routers
 - NUD will detect and remove stale redirects
- Should we allow redirects in this specification?

Next Step

- Accept as 6man working group document?
- Comments are welcome

Thanks!

Backup slides

NCE Management

- Two Types of NCE
 - Legacy (RFC 4861 NCE)
 - Registered (in mixed-mode and efficiency-aware only mode)
- NCE types are orthogonal to NCE states
- All NCE are started with Legacy NCE
 - Turns into 'Registered' NCE upon successful processing of ARO
- Registered NCE are NOT garbage-collectable
 - Registered NCE has its own life-time
 - Registered NCE are renewed by the EAH via Registration refresh before it expired
- In efficiency-aware only mode a TENTATIVE legacy NCE is created for a short time and deleted if the entry does not get registered
- Registration lifetime and EUI-64 are recorded for Registered NCE
- Only one type of NCE can exist in Neighbor Cache at a time

Handling ND-DOS Attacks

- Only in efficiency-Aware mode
- Tentative NCE entries are discarded if registration fails
- Duplicate entries must be checked before creating a valid NCE entry by checking EUI-64, MAC-address and IP-address
- All RS requests MUST contain SLLA option and avoids Neighbor Solicitation for the requestor's address resolution

Handling Sleepy Nodes

- Sleepy nodes must support efficiency-aware mode only behavior
- No Multicast periodic RA
- No Address resolution Required
- Address Registration ensures duplicate checks
- Uses Default-router for packet forwarding
- Sleep and Registration interval should be synchronized for maximum energy savings