Corresponding Auto Names
for IPv6 Addresses

<draft-kitamura-ipv6-auto-name-03.txt>

Hirosh1 KITAMURA
NEC Corporation
kitamura(@da.jp.nec.com

Assumed Typical
[Pv6 Communication Environment

Router

ULA RA 1d01:2345:6789::/64
Global RA 2001:db8::/64

Node A (MAC: 00:0d:5e:b8:80:7hb)
Literal Address

@ £c30::20d: 5¢ff:feb8:807b%fxp0

@ £d01:2345:6789::20d: Seff:feb8:807b

@ (d01:2345:6789::1234

@ 2001:db8&::20d:5¢eft:feb8:807b

@ 2001:db8::1234

Node B (MAC: 00:0c:76:d9:14:¢3)
Literal Address

@ (:30::20c:761F:fed9: 14e3%em0

@ £d01:2345:6789::20c:76ff:fed9: 14e3

@ (d01:2345:6789::5678

@ 2001:db8::20c:76ft:fed9:14e3

@ 2001:db8::5678

Auto Names Examples

Router

ULA RA 1d01:2345:6789::/64
Global RA 2001:db8::/64

Node A (MAC: 00:0d:5e:b8:80:7hb) Node B (MAC: 00:0c:76:d9:14:¢3)
Literal Address Auto Name Literal Address Auto Name

@ £c30::20d: 5¢ff:feb8:807b%fxp0 L0-7bz%fxp(|@ fe80::20c:76ff:fed9: 14e¢3%em0 L.0-e3z%em0

@ d01:2345:6789::20d:5eff:feb8:807b U0-Tbz @ d01:2345:6789::20c:76ff:fed9:14e3 U0-e3z

@ (d01:2345:6789::1234 U1-7bz @ (d01:2345:6789::5678 Ul-e3z

@ 2001:db8::20d:5¢eft:feb8:807b G0-7bz @ 2001:db8::20c:76ft:fed9:14e3 GO0-e3z

@ 2001:db3::1234 G1-7bz @ 2001:db8::5678 Gl-e3z

Literal Address :> Auto Name

64 bit| (8 octet) 64 bit| (8 octet)

| Prefix Interface ID (EUI64)

<P><I> <NGI>
2001 :db8::20d:5eff:feb8:807b

-

GO-7bz

<P>: Prefix part
1 character: (e.g., 'L', 'U', 'G"
<I>: Interface ID part
1 character: (e.g.,'0','1",'2',,,'9",'a", , ,'z"
<NGI>: Node (Interface) Group ID
3 characters: (e.g.,'/bz', '3ez') inherited from
the last octet (2 characters) of the node's MAC address
+ 1 char. for collision avoidance (usually ‘z’)

Auto Names techniques 1n short

e Under certain scoped name environment,
All IPv6 addresses (formed as Prefix + I/F ID) are
shown 1n only fixed 6 characters
("<P><I>-<NGI>") strings format.

[kind of address compression techniques are used.]

* [Pv6 Address information i1s annotated and changed
almost meaningless > meaningful

* Human can remember, understand and ‘type’
Auto Names (instead of literal IPv6 addresses).

Example 1: (Wireshark packet dump)

Easy Compare / Distinguish IPv6 addresses

It 1s very difficult to compare (similar) literal IPv6 addresses

Source

|Destination |Protocol_|Ihfo

2001:dc2a:café:babé:202:bef:fé4d:1522
2001:dc2a:cafe:babe:202:b3ff:fed4d:15a2
2001:dc2a:cafe:babe:202:b3ff:fe4d:1522

2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2 TCP 52456 > ssh [ACK] Seg=1
2001:dc2a:cafe:babe:202:b3ff:fe4d:1522 SSHv2 Server Protocol: SSH-2.
2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2 sSSHv2 Client Protocol: SSH-2.
10.2.0.225 ICMP Echo (ping) reply ic

10.2.0.55
Source |Destination Protocol |Info

e}
GO-22z G0-22z= TCP 52456 > ssh [ACK] Seg=1
G0-22= G022z SSHv2 Server Protocol: SSH-2.
GO\22= G0-22= SSHv2 Client Protocol: SSH-2.
10.2.2 55 10.2.2.225 ICMP Echo (ping) reply ic

It becomes easy to compare Auto Names (fixed 6 char. Strings)

Example 2: (Wireshark packet dump)
Easy Identify / Group IPv6 addresses

It 1s very difficult to 1dentify literal IPv6 addresses (set to the same node)

Destination

2001 :dd2a:
fd02:dc2a:
fe80::202:
2001 :dd2a:
fd02:dc2a:
1Ke st
2001 :dd2a:
fd02:dc2a:
fe80::202:
2001 :dd2a:
fd02:dc2a:

55

cafe:babe:
cafe:babe:
b3ff:fedd:
cafe:babe:
cafe:babe:

cafe:babe:
cafe:babe:
b3ff:fedd:
cafe:babe:
cafe:babe:

202:b3ff:fed4d:1522 2001:dd2a:
1f31:beef:face:fale fd02:dc2a:
:b3ff:

fe80::202
2001 :dd2a:

202:b3ff:fed4d:1522 fd02:dc2a:

10.2.0.225

202:b3ff:fed4d:15ab 2001:dd2a:
1f32:beef:face:fale fd02:dc2a:
:b3ff:

fe80::202
2001 :dd2a:

202:b3ff:fed4d:15ab fd02:dc2a:

cafe:
cafe:

cafe:
cafe:

cafe:
cafe:

cafe:
cafe:

babe:
babe:
fedd:
babe:
babe:

babe:
babe:
fedd:
babe:
babe:

202:b3ff:fed4d:15ab
1f32:beef:face:fale
15ab

:69
202:b3ff:fed4d:15ab

202:b3ff:fed4d:1522
1f31:beef:face:fale
1522

168
202:b3ff:fed4d:1522

ICMPV6
ICMPV6
ICMPV6
ICMPV6
ICMPV6
ICMP

ICMPV6
ICMPV6
ICMPV6
ICMPV6
ICMPV6

Echo (ping) request 1id=
Echo (ping) request 1id=
Echo (ping) request 1id=
Neighbor Solicitation f
Neighbor Advertisement
Echo (ping) reply ic
Echo (ping) reply id=0>
Neighbor Advertisement
Echo (ping) reply id=0>
Echo (ping) reply id=0>
Echo (ping) reply id=0>

Source

G0-22z
Ua _22z
L0-22z
Gl 22z
u0-22z

10.2.0.

GO, _abz
Ua _abz
LO _abz
Gl _abz
u0. abz

55

GO0 _abz
Ua_abz
LO_abz
Gl _abz
U0 _abz
10.2.0.225
G0-22z
ua_22z
L0-22z
Gl_22z
u0-22z

e A E

ICMPV6
ICMPV6
ICMPV6
ICMPV6
ICMPV6
ICMP

ICMPV6
ICMPV6
ICMPV6
ICMPV6
ICMPV6

ST
Echo (ping) request 1id=
Echo (ping) request 1id=
Echo (ping) request 1id=
Neighbor Solicitation f
Neighbor Advertisement
Echo (ping) reply ic
Echo (ping) reply id=0»
Neighbor Advertisement
Echo (ping) reply id=0»
Echo (ping) reply id=0»
Echo (ping) reply id=0»

Deployed Notions and Functions

used in Auto Names
Stateless Name

Stateful Stateless
Address DHCPv6 SLAAC
Existin
Name 1SHNg Auto Names
Domain Names
Scoped Name
Global Site-Local (ULA) Link-Local Node-
Local
Address | e.g.,2001:db8::/64 | e.g., fd01:2345:6789::/64 fe80::/64
Existing Existing Domain Auto
Name Domain Names Names / Auto Names ANIOFNAIMES Names

Scope 1s dependent on how Auto Names data is dealt
and which “name services™ are used.

Name Services

* Various types of ‘name services’
can be used for Auto Names.

— DNS can be used for wide scoped Auto Names.
« All OS have DNS resolver implementations.

* By using the DNS user-authenticate implementation,
it is easy to achieve the ‘Scoped Name’ features.

— “/etc/hosts” can be used
for narrow scoped Auto Names.
(especially for Link-local scoped ones)
* It 1s very easy to deploy Auto Names.

Questions on Auto Names Design

<P>:No need to ask: because 1t 1s minimum 1 char.
<I>:No need to ask: because i1t 1s minimum 1 char.

<NGI>: Ask to Audience:
A: 3 char. (current design)
Inherited from the last octet (2char.) of MAC
+ 1 char. for collision avoidance (usually ‘z’)
B: 2 char.
Not collided Random 2 char. or

Inherited 1 char. + 1 char. for collision avoidance.

C: 1 char.
Not collided Random 1 char.

10

Auto Names <NGI> Design Analysis

A: 3 char. Easy to remember, 3 char. is rather long.
(current design) because 2 chars are inherited Need to remember 1 char.
from MAC address. for collision avoidance,

(but it is usually ‘z’)

B: 2 char. 2 char. is shorter than 3 char. Need to remember at least

(got suggestion) 1 random char. for collision
avoidance

C: 1 char. 1 char. is short enough Capacity 1s small.

Please let us know your preference.

11

Discussions

Please let us know your comments.

Goal of this I-D 1s
to be published as “Informational RFC™.

12

Reserved slides are started from
here.

13

Site-dependent Mapping tables
(for collision avoidance)

Mapping tables are used only when Auto Names are generated
(These tables are not used for usual name resolving operations)

« MAC address — <NGI> value mapping table

MAC Address <NGI> value
00:0d:5e:b8:80:7b —/bz
00:0c:76:d9:14:e3 -e3z

* Prefix — <P> value mapping table
Prefix <P> value
fe80::/64 - Link-Local L

fd01:2345:6789::/64 : Site-Local (ULA) |U
2001:db8::/64 - Global G

<[> Value

<I> value stands for Interface ID part of IPv6 Address
as 1 character format.

<I> value assignment is based on

three address type categorization

type description
"0" used for EUI64-based address
"T" - "9" |used for manually set addresses
(stateful addresses will be categorized here)
"a" - "7z" |used for automatically generated and set addresses

except EUI64-based
(Temporary addresses are categorized here)

15

Address Type Distinction

« EUI64-based Address Identification

— When IPv6 and MAC addresses are found
simultaneously, it 1s easy to i1dentify.

e Manual or Automatic Distinction

— Human bias 1s checked
by using "Zero Contain Rate" in IPv6 Address.

16

<NGI> Value

<NGI> value i1s also called Auto Name-Suffix.

<NGI> value is shown as 'XYZ' format:
'XY": (Ist, 2nd chars) are inherited from
the last octet (2 characters) of the node's MAC address

'Z' . (3rd char) suffix char to avoid a collision of 'XY"
starting from "z"

if 'XY" 1s collided, 'Z' is changed into "y", "x"

299

Collision Probability of 256 states (1 octet):

By using the birthday paradox theorem, probability 1s calculated.

If there are 19 nodes (interfaces) on the same scope,
collision 1s happened with 50% probability.

Collision check procedure for 'XY' is necessary.

17

