Corresponding Auto Names for IPv6 Addresses <draft-kitamura-ipv6-auto-name-03.txt>

Hiroshi KITAMURA NEC Corporation kitamura@da.jp.nec.com

Auto Names Examples

<NGI>: Node (Interface) Group ID 3 characters: (e.g., '7bz', '3ez') inherited from the last octet (2 characters) of the node's MAC address + 1 char. for collision avoidance (usually 'z')

Auto Names techniques in short

- Under certain scoped name environment, All IPv6 addresses (formed as Prefix + I/F ID) are shown in only *fixed 6 characters* (''<P><I>-<NGI>") strings format. [kind of address compression techniques are used.]
- IPv6 Address information is annotated and changed almost meaningless meaningful
- Human can remember, understand and 'type' Auto Names (instead of literal IPv6 addresses).

Example 1: (Wireshark packet dump) Easy Compare / Distinguish IPv6 addresses

It is very difficult to compare (similar) literal IPv6 addresses

Source	Destination	Protocol	Info
2001:dc2a:cafe:babe:202:b3ff:fe4d:1522	2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2	TCP	52456 > ssh [SYN] Seq=(
2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2	2001:dc2a:cafe:babe:202:b3ff:fe4d:1522	TCP	ssh > 52456 [SYN, ACK]
2001:dc2a:cafe:babe:202:b3ff:fe4d:1522	2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2	тср	52456 > ssh [ACK] Seq=1
2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2	2001:dc2a:cafe:babe:202:b3ff:fe4d:1522	SSHv2	Server Protocol: SSH-2.
2001:dc2a:cafe:babe:202:b3ff:fe4d:1522	2001:dc2a:cafe:babe:202:b3ff:fe4d:15a2	SSHv2	Client Protocol: SSH-2.
10.2.0.55	10.2.0.225	ICMP	Echo (ping) reply ic

 \bigcirc

Source	Destination	Protocol	Info
G0-22z	GO-a2z	TCP	52456 > ssh [SYN] Seq=(
G0 222	G0-22z	TCP	ssh > 52456 [SYN, ACK]
G0 222	G0-222	TCP	52456 > ssh [ACK] Seq=1
G0-322	G0 222	SSHv2	Server Protocol: SSH-2.
G0 222	G0-222	SSHv2	Client Protocol: SSH-2.
10-2.0 55	10.2.0.225	ICMP	Echo (ping) reply ic

It becomes easy to compare Auto Names (fixed 6 char. Strings)

Example 2: (Wireshark packet dump) Easy Identify / Group IPv6 addresses

It is very difficult to identify literal IPv6 addresses (set to the same node)

Source	Destination	Protocol	Info
10.2.0.225	10.2.0.55	ICMP	Echo (ping) request id
2001:dd2a:cafe:babe:202:b3ff:fe4d:1522	2001:dd2a:cafe:babe:202:b3ff:fe4d:15ab	ICMPv6	Echo (ping) request id=
fd02:dc2a:cafe:babe:1f31:beef:face:fa1e	fd02:dc2a:cafe:babe:1f32:beef:face:fale	ICMPv6	Echo (ping) request id=
fe80::202:b3ff:fe4d:1522	fe80::202:b3ff:fe4d:15ab	ICMPv6	Echo (ping) request id=
2001:dd2a:cafe:babe::68	2001:dd2a:cafe:babe::69	ICMPv6	Neighbor Solicitation f
fd02:dc2a:cafe:babe:202:b3ff:fe4d:1522	fd02:dc2a:cafe:babe:202:b3ff:fe4d:15ab	ICMPv6	Neighbor Advertisement
10.2.0.55	10.2.0.225	ICMP	Echo (ping) reply ic
2001:dd2a:cafe:babe:202:b3ff:fe4d:15ab	2001:dd2a:cafe:babe:202:b3ff:fe4d:1522	ICMPv6	Echo (ping) reply id=0>
fd02:dc2a:cafe:babe:1f32:beef:face:fale	fd02:dc2a:cafe:babe:1f31:beef:face:fale	ICMPv6	Neighbor Advertisement
fe80::202:b3ff:fe4d:15ab	fe80::202:b3ff:fe4d:1522	ICMPv6	Echo (ping) reply id=0>
2001:dd2a:cafe:babe::69	2001:dd2a:cafe:babe::68	ICMPV6	Echo (ping) reply id=0>
fd02:dc2a:cafe:babe:202:b3ff:fe4d:15ab	fd02:dc2a:cafe:babe:202:b3ff:fe4d:1522	ICMPv6	Echo (ping) reply id=0>

Destination Source Protocol Info 10.2.0.225 10.2.0.55 ICMP Echo (ping) request ICMPv6 Echo (ping) request id= G0-22z GO abz Echo (ping) request id= Ua_22z Ua_abz ICMPv6 L0-22z LO abz Echo (ping) request id= ICMPv6 Neighbor Solicitation f G1 22z G1 abz ICMPv6 Neighbor Advertisement U0-22z UO abz ICMPv6 10.2.0.55 10.2.0.225 ICMP Echo (ping) reply ic GO abz G0-22z ICMPv6 Echo (ping) reply id=0x Ua_abz Ua_22z Neighbor Advertisement ICMPv6 LO_abz L0-22z Echo (ping) reply id=0x ICMPv6 G1_abz G1_22z Echo (ping) reply id=0> ICMPv6 UO abz U0-22z ICMPv6 Echo (ping) reply id=0x

Deployed Notions and Functions used in **Auto Names**

• Stateless Name

	Stateful	Stateless
Address	DHCPv6	SLAAC
Name	Existing Domain Names	Auto Names

• Scoped Name

	Global	Site-Local (ULA)	Link-Local	Node- Local
Address	e.g., 2001:db8::/64	e.g., fd01:2345:6789::/64	fe80::/64	
Name	Existing Domain Names	Existing Domain Names / Auto Names	Auto Names	Auto Names

Scope is dependent on how **Auto Names** data is dealt and which "name services" are used.

Name Services

- Various types of '**name services**' can be used for Auto Names.
 - DNS can be used for wide scoped Auto Names.
 - All OS have DNS resolver implementations.
 - By using the DNS user-authenticate implementation, it is easy to achieve the 'Scoped Name' features.
 - "/etc/hosts" can be used for narrow scoped Auto Names. (especially for Link-local scoped ones)
 - It is very easy to deploy Auto Names.

Questions on Auto Names Design

P>: No need to ask: because it is <u>minimum 1</u> char. **I>:** No need to ask: because it is <u>minimum 1</u> char.

<NGI>: <u>Ask to Audience</u>:

- A: 3 char. (current design) Inherited from the last octet (2char.) of MAC + 1 char. for collision avoidance (usually 'z')
- B: 2 char.

Not collided Random 2 char. or

Inherited 1 char. + 1 char. for collision avoidance.

C: 1 char.

Not collided Random 1 char.

Auto Names <**NGI**> Design Analysis

Туре:	Merit	Demerit
A: 3 char. (current design)	Easy to remember , because 2 chars are inherited from MAC address.	3 char. is rather long. Need to remember 1 char. for collision avoidance, (but it is usually 'z')
B: 2 char. (got suggestion)	2 char. is shorter than 3 char.	Need to remember at least 1 random char. for collision avoidance
C: 1 char.	1 char. is short enough	Capacity is small.

Please let us know your preference.

Discussions

Please let us know your comments.

Goal of this I-D is to be published as "Informational RFC".

Reserved slides are started from here.

Site-dependent Mapping tables (for *collision avoidance*)

Mapping tables are used **only when Auto Names** are **generated** (These tables are **not used** for usual name resolving operations)

• MAC address – <NGI> value mapping table

MAC Address	<ngi> value</ngi>
00:0d:5e:b8:80:7b	-7bz
00:0c:76:d9:14:e3	-e3z

• Prefix – <P> value mapping table

Prefix		<p> value</p>
fe80::/64	Link-Local	L
fd01:2345:6789::/64	Site-Local (ULA)	U
2001:db8::/64	Global	G

<I> Value

<I> value stands for Interface ID part of IPv6 Address as 1 character format.

<I> value assignment is based on three address type categorization

type	description
"0"	used for EUI64-based address
"1" - "9"	used for manually set addresses
	(stateful addresses will be categorized here)
"a" - "z"	used for automatically generated and set addresses
	except EUI64-based
	(Temporary addresses are categorized here)

Address Type Distinction

- EUI64-based Address Identification
 - When IPv6 and MAC addresses are found simultaneously, it is easy to identify.
- Manual or Automatic Distinction

 Human bias is checked
 by using "Zero Contain Rate" in IPv6 Address.

<NGI> Value

<NGI> value is also called Auto Name-Suffix.

<NGI> value is shown as 'XYZ' format: 'XY': (1st, 2nd chars) are **inherited** from the **last octet** (2 characters) of the node's MAC address 'Z': (3rd char) suffix char to **avoid a collision** of 'XY' starting from "z" if 'XY' is collided, 'Z' is changed into "y", "x" ,,,

Collision Probability of 256 states (1 octet):

By using the *birthday paradox theorem*, probability is calculated.
If there are **19 nodes** (interfaces) on the same scope, collision is happened with **50%** probability.
Collision check procedure for 'XY' is necessary.