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Update Overview 
•  Presented at 84th IETF, Vancouver 
•  First revision based on comments made at 84th IETF 

–  Comments on Content-Provider-ID formats 
–  Comment on URL length limitation 
–  Comment on loop prevention algorithm 

•  Experimentations & results 
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Main Changes (1) 

•  In 00 version, "CDN-Provider-ID“ was described as a 
list of CDN provider Names and MaxNumRedHops  

•  In 01 version, changed to a list of CDN-Provider-
Names followed by MaxNumRedHops. 

•  Note that a list of CDN-Provider-ID is conveyed in URI 
string to deal with HTTP URL length limitation 

•  Example: 
http://dcdn1.csp.com/ucdn.csp.com?uCDN=100:0 & 
dDCN=200:1 & dCDN=300:0 & MaxNumRedHops=8 

3 



Main Changes (2) 

•  In 00 version, we specified loop prevention 
algorithm in pseudo code 

•  In 01 version, we changed it to specify the 
following in descriptive form: 
–   a mechanism to allow loop detection 
–  post processing, that is, who is responsible 

and in what quality (service availability vs 
quality) for resolving the situation  
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Experimentation of Loop Preventio
n 

•  Built a PoC test-bed with our consortium 
members (KT, SKT, LGU+, SolBox) 
– Tested in a simple ring type cascaded topology 

•  Implemented both Iterative HTTP-/DNS-
based request routing redirection.  Recursive 
method is under way 

•  Objectives 
–   Verify the feasibility of the proposed method 
–  Measure delays incurred during RRR 
–  Impact on the size and transmission 

performance of redirection messages 
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Experimentation Findings 

•  Delays in various hop count settings: 5, 10, …, n hops 
–  Iterative vs recursive 
–  HTTP vs DNS 

•  Impact on the size and transmission performance  
•  Miscellaneous 

–  302 HTTP redirection supports upto 20 redirections 
–  DNS CNAME supports upto 38 redirections 
–  DNS redirection which retains initiating CDN (uCDN) 

domain name doesn’t work.  Work-around: replace with the 
immediate parent domain name instead 
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Summary & Next Step 
•  Minor updates were made based on the comments 

to 00 version 
•  Some experiments performed with initial results 
•  Further tests will be performed and reported in the 

next IETF 

•  Propose to merge loop prevention mechanism with 
request routing redirection draft, draft-he-cdni-
routing-request-redirection-03 

•  Any comments or suggestions for improvements are 
invited 
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Chair’s Questions & Answers 
•  Do you feel that the scheme is well understood (i.e. what has to be signaled, how to e

ncode it, how to process it)? 
–  Encoding is simple.  Currently part of URI query string or CNAME.  It can also be encoded in

 JSON or other encoding formats 
–  Signaling is done currently as a part of HTTP or DNS but can be done by RRRI interface prot

ocol, for example, RRRI request & response message in the he’s draft 
–  Processing is a Request Router’s operation behavior which is a part of redirection decision 

making process.  And it is also simple.  It can cover both loop prevention and detection with 
associated post detection processes 

–  The same scheme can be equally applicable for both iterative and recursive redirections 
–  For scheme’s feasibility, performance impact, we performed experiments with some initial res

ults 

•  Are you clear that it does not have any impact at all on other interfaces? 
–  Loop detection is optional requirement then Capabilities advertisement needs to specify it as 

a part of capabilities 
–  In case of metadata, if operational metadata is specified, loop detection or prevention can be

 one example. 
–  For logging, loop detection & prevention event can be part of logging processes 
–  For control interface, not affected by trigger interface but not clear for other control aspects si

nce they are defined yet 
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