
CDNi Request Routing Redirection
with Loop Prevention

draft-choi-cdni-req-routing-redir-loop-prevention-01.txt

Taesang Choi (choits@etri.re.kr)
Young-IL Seo (yohan.seo@kt.com)

Dong-Ju Kim (dj.kim@kt.com)
Jongmin Lee (jminlee@sk.com)

Ja-Ryeong Koo (wjbkoo@lguplus.co.kr)
John Dongho Shin (eastsky@solbox.com)

Kyungsoo Park (kspark@kaist.ac.kr)

November 8, 2012
85th IETF, Atlanta

CDNi WG

 1

Update Overview
•  Presented at 84th IETF, Vancouver
•  First revision based on comments made at 84th IETF

–  Comments on Content-Provider-ID formats
–  Comment on URL length limitation
–  Comment on loop prevention algorithm

•  Experimentations & results

2

Main Changes (1)

•  In 00 version, "CDN-Provider-ID“ was described as a
list of CDN provider Names and MaxNumRedHops

•  In 01 version, changed to a list of CDN-Provider-
Names followed by MaxNumRedHops.

•  Note that a list of CDN-Provider-ID is conveyed in URI
string to deal with HTTP URL length limitation

•  Example:
http://dcdn1.csp.com/ucdn.csp.com?uCDN=100:0 &
dDCN=200:1 & dCDN=300:0 & MaxNumRedHops=8

3

Main Changes (2)

•  In 00 version, we specified loop prevention
algorithm in pseudo code

•  In 01 version, we changed it to specify the
following in descriptive form:
–  a mechanism to allow loop detection
–  post processing, that is, who is responsible

and in what quality (service availability vs
quality) for resolving the situation

4

Experimentation of Loop Preventio
n

•  Built a PoC test-bed with our consortium
members (KT, SKT, LGU+, SolBox)
– Tested in a simple ring type cascaded topology

•  Implemented both Iterative HTTP-/DNS-
based request routing redirection. Recursive
method is under way

•  Objectives
–  Verify the feasibility of the proposed method
–  Measure delays incurred during RRR
–  Impact on the size and transmission

performance of redirection messages

5

CDNi Server IP
211.x.x.x

Surrogate IP
211.x.x.y

IP Coverage
220.x.x.x/16

Delay
30

Load
20

Bandwidth
10

Kernal Name
Linux

Kernel Release
2.6.18-164.el5
HW Platform

x86_64
Operating Syste

m
GNU/Linux

Model Name
Intel(R) Xeon(R) C
PU E5620 2.40G

Hz
Core Number
Single Core

Solbox-KAIST CDN
100:0

CDNi Server IP
212.x.x.x

Surrogate IP
212.x.x.y

IP Coverage
220.x.x.x/16

Delay
10

Load
30

Bandwidth
20

Kernal Name
Linux

Kernel Release
2.6.18-308.13.1.el

5
HW Platform

x86_64
Operating Syste

m
GNU/Linux

Model Name
Intel(R) Xeon(R) C
PU E5506 @ 2.13

GHz
Core Number

Quad Core

SKT CDN
200:0

CDNi Server IP
213.x.x.x

Surrogate IP
213.x.x.y

IP Coverage
220.x.x.x/16

Delay
20

Load
10

Bandwidth
30

Kernal Name
Linux

Kernel Release
2.6.18-194.el5
HW Platform

x86_64
Operating Syste

m
GNU/Linux

Model Name
Intel(R) Xeon(R) C
PU X3440

2.53GHz
Core Number

Quad Core

LGU CDN
400:0 FP Polic

y
Load Firs

t

FP Polic
y

Bandwidt
h First

FP Polic
y

Delay Fir
st

Request Ro
uting

CDNi Server IP
214.x.x.x

Surrogate IP
214.x.x.y

IP Coverage
220.x.x.x/16

Delay
10

Load
20

Bandwidth
30

Kernal Name
Linux

Kernel Release
2.6.18-164.el5
HW Platform

x86_64
Operating Syste

m
GNU/Linux

Model Name
Intel(R) Xeon(R) C
PU E5620 2.40G

Hz
Core Number

Quad Core

KT CDN
500:0 FP Polic

y
Delay Fir

st

Experimentation Findings

•  Delays in various hop count settings: 5, 10, …, n hops
–  Iterative vs recursive
–  HTTP vs DNS

•  Impact on the size and transmission performance
•  Miscellaneous

–  302 HTTP redirection supports upto 20 redirections
–  DNS CNAME supports upto 38 redirections
–  DNS redirection which retains initiating CDN (uCDN)

domain name doesn’t work. Work-around: replace with the
immediate parent domain name instead

7

Delay graph

0

0.2

0.4

0.6

0.8

1

1.2

1.4

5 10 15 20

D
el

ay
 (s

ec
)

Hop Count

HTTP Redirection

LGU+
SolBox
SKT

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

5	 10	 15	 20	 25	 30	 35	

De
la
y	
(s
ec
)

Redirec/on	 count

DNS	 Redirec/on

LGU+	

SolBo
x	
SKT	

HTTP Redirections Trace

Summary & Next Step
•  Minor updates were made based on the comments

to 00 version
•  Some experiments performed with initial results
•  Further tests will be performed and reported in the

next IETF

•  Propose to merge loop prevention mechanism with
request routing redirection draft, draft-he-cdni-
routing-request-redirection-03

•  Any comments or suggestions for improvements are
invited

10

Chair’s Questions & Answers
•  Do you feel that the scheme is well understood (i.e. what has to be signaled, how to e

ncode it, how to process it)?
–  Encoding is simple. Currently part of URI query string or CNAME. It can also be encoded in

 JSON or other encoding formats
–  Signaling is done currently as a part of HTTP or DNS but can be done by RRRI interface prot

ocol, for example, RRRI request & response message in the he’s draft
–  Processing is a Request Router’s operation behavior which is a part of redirection decision

making process. And it is also simple. It can cover both loop prevention and detection with
associated post detection processes

–  The same scheme can be equally applicable for both iterative and recursive redirections
–  For scheme’s feasibility, performance impact, we performed experiments with some initial res

ults

•  Are you clear that it does not have any impact at all on other interfaces?
–  Loop detection is optional requirement then Capabilities advertisement needs to specify it as

a part of capabilities
–  In case of metadata, if operational metadata is specified, loop detection or prevention can be

 one example.
–  For logging, loop detection & prevention event can be part of logging processes
–  For control interface, not affected by trigger interface but not clear for other control aspects si

nce they are defined yet

11

