
Diameter End-to-End
Security: Keyed Message

Digests, Digital Signatures,
and Encryption

draft-korhonen-dime-e2e-security-01
Jouni Korhonen, Hannes Tschofenig

Dime WG, IETF#85

Overview

  Background
  Requirements
  Strawman solutions proposal
  Two aspects:

  Authentication and Key Exchange
  Actual AVP protection

  Changes from -00 to -01

Background
  Diameter has no end-to-end security framework at

the moment. Acknowledged in RFC 6733.

  Folks deploying (=telco camp e.g., 3GPP and
GSMA) large Diameter networks for roaming
purposes realized that their security assumptions
are not met. Solutions are needed now!

  Bilateral site-to-site VPNs with all your roaming
partners does not scale in a long run and one loses
the possible benefits of 3rd party “roaming proxies”.

Requirements
  Provide end-to-end security properties to Diameter on top of

existing hop-by-hop security model.
  End-to-end is between two nodes with any number of intermediates in

between. This allows “site-to-site” type of deployments as well.

  Works with existing request routing and through proxy agents.

  Decouple key management from end-to-end AVP protection.

  Offer both integrity and confidentiality protection.

  Easy to integrate into existing Diameter applications (integrity
protection).

Requirements – two
deployment cases

Realm example.com

Roaming network

End-to-end protection over this path

Realm example.net

Edge Agent
E2E security

Aware

Edge Agent
E2E security

Aware

Protected AVPs

Diameter Node
NOT security

Aware

Diameter Node
NOT security

Aware

Realm example.com

Roaming network

End-to-end protection over this path

Realm example.net

Edge Agent Edge Agent

Diameter Node
E2E security

Aware

Diameter Node
E2E security

Aware

Protected AVPs

Site-to-site

End-to-end

Strawman Proposal in
draft-korhonen-dime-e2e-security-01
  This solution focuses on protecting Diameter AVPs. To offer the

functionality two AVPs are defined:
  Signed-Data (octet string) for integrity protection of one or more AVPs.
  Encrypted-Data (octet string) for confidentiality protection of one or more AVPs.

  We selected JSON-based approach:
  JSON Web signature (JWS) for integrity protection.
  JSON Web Encryption (JWE) for confidentiality protection.
  Encoding is “Diameter friendly” – not JSON style text strings.
  Reuses JSON IANA registries.

  Not tied to a specific Diameter application.

  Authentication and key management is not part of this proposal:
  Likely that “one size fits all” approach will not work due to different deployment

environments

Signed-Data AVP
  The AVP carries JSON Web Signature (JWS) of one or more of

AVPs. Each protected AVP is hashed and the hash is included
into the JWS payload.

  Hashed AVPs are linked to “originals” using their AVP Code. If
there are multiple instances of the same AVP, you hash them all
and do one by one verification -> allows for rearranging AVPs
and detection of addition/removal/modification of AVPs.

  Both JWS Payload and signature use the same hash algorithm
of the cryptographic algorithm indicated in the JWS Header.

  Can be included into existing Diameter applications.

Encrypted-Data AVP

  The AVP carries JSON Web Encryption
(JWE) data structure and the JWE Payload
embeds of one or more protected AVPs.

  Cannot be used with existing Diameter
applications since encrypted AVPs are
embedded inside the Encrypted-Data AVP(s).

Error Handling
  Transient failures

  DIAMETER_KEY_UNKNOWN – A Signed-Data or an Encrypted-Data
AVP is received that was generated using a key that cannot be found in
the key store. To recover a new end-to-end key establishment procedure
may need to be invoked.

  DIAMETER_HEADER_NAME_ERROR (TBD12 – This error code is
returned when a Header Parameter Name is not understood in the JWS-
Header AVP or in the JWE-Header AVP.

  Permanent failures
  DIAMETER_DECRYPTION_ERROR – This error code is returned when

an Encrypted-Data AVP is received and the decryption fails for an
unknown reason.

  DIAMETER_SIGNATURE_ERROR – This error code is returned when a
Signed-Data AVP is received and the verification fails for an unknown
reason.

Changes from -00 to -01
  Clarification that both end-to-end and site-to-

site approaches are in scope.

  Reworked the encoding of protected AVPs.
They are now more Diameter like and
compact. Still using JSON framework.

  New DIAMETER_HEADER_NAME_ERROR
error code added.

Example of signature..
Signed-Data ::= < AVP Header: TBD1 >!
 { JWS-Header } !
 * { JWS-AVP-Payload }!
 { JWS-Signature }!
 * [AVP]!

The JWS Header used in this example is: !

!{"typ":"JWT",!
 "alg":"HS256",!
 "kid":"abc123"!
 }

Signed-Data Grouped AVP:!
0x00000nnn // Signed-Data code 'nnn’!
0x000000e8 // Flags=0, Length=232(8+49+3+44+44+44+40)!

JWS Header encoded into the JWS-Header AVP:!
0x00000xxx // JWS-Header code 'xxx’!
0x00000031 // Flags=0, Length=49!
'{"typ":"JWT","alg":"HS256","kid":"abc123"}' // 41 !
0x00,0x00,0x00 // 3 octets padding!

JWS Payload encoded into three JWS-AVP-Payload AVPs:!

0x00000zzz // JWS-AVP-Payload code 'zzz' <--+!
0x0000002c // Flags=0, Length=44 |!
0x00000107 // 263, Session-Id, 4 octets |!
0xca8362ed,0x69a32ffb // 256 bits hash of |!
0x9092ca98,0x745239da // Session-id |!
0x6960af73,0x6386bc38 |!
0x407e518b,0xe4760548 |!
0x00000zzz // JWS-AVP-Payload code 'zzz' |!
0x0000002c // Flags=0, Length=44 |!
0x00000108 // 264, Origin-Host, 4 octets |!
0x64b52a15,0xa75a8157 // 256 bits hash of |!
0x151993a6,0xb9839866 // Origin-Realm |!
0x3b94afa3,0x85568552 |!
0x46602ccc,0x3f9d9a77 |!
0x00000zzz // JWS-AVP-Payload code 'zzz' |!
0x0000002c // Flags=0, Length=44 |!
0x00000128 // 296, Origin-Realm, 4 octets |!
0x3c7c0b17,0x4a1c58d0 // 256 bits hash of |!
0xdc2844a3,0x28580385 // Origin-Realm |!
0x25eb08b0,0xeb20c941 // |!
0xcd52f74c,0xf55ae9ab // <--+!

JWS Signature encoded into the JWS-Signature AVP:!
0x00000yyy // JWS-Signature code 'yyy’!
0x00000028 // Flags=0, Length=40!
0x70ec221e,0xe0300ec1,0xb7ce968d,0x6ec6ad9e!
0x8afbe983,0x2b0e331c,0x2e1f51ac,0xf9af0188

Individual
AVP hash

Signature
over this
binary blob

Questions? Comments?

  First: is the end-to-end AVP protection
framework approach feasible (forget JSON
at this point)??

  Second: is reusing JSON ideas a feasible
approach (forget encoding details at this
point)??

  Third: does the WG think this I-D is a good
starting point??

