Deployment of Existing Mobility Protocols in DMM Scenario

draft-liu-dmm-practice-of-deployment-00 draft-chan-dmm-framework-gap-analysis-05

What is the "Best current practice of DMM"?

In the charter:

 Practices: Document practices for the deployment of existing mobility protocols in a distributed mobility management environment.

It means:

- How to deploy existing mobility protocol in DMM scenario to solve DMM problem?
- What degree the DMM problem could be solved?

Motivation of this "practice draft"

- Many solutions have been proposed in DMM WG, but before defining any new DMM protocol, it is a good approach to investigate first whether it is feasible to deploy current IP mobility protocol in DMM scenario in a way that can meet the requirement of DMM.
- This document discusses the way of the deployment of current IP mobility protocol in DMM scenario and analyses the gaps between this approach and the DMM requirement.

Client-based mobility deployment in DMM scenario

- Deploy HA in the access router level.
- MN always select the nearest HA.
- Newly initiated flow go though the new HA.
- Previous flow go though the previous HA.

Client-based mobility deployment in DMM scenario (cont.)

Analysis

- Partly solve the DMM problem
 - Routing is optimal for the newly initiated flow
 - Routing is still not optimal for the previous established flow
- Other gaps
 - Prefix management of the terminal
 - Source address selection of the terminal
 - draft-liu-dmm-dynamic-anchor-discussion-00
 - draft-liu-dmm-address-selection-00
 - draft-liu-dmm-mobility-api-00

Network-based mobility deployment in DMM scenario

- Deploy LMA/MAG together in the access router level
- MN always select the nearest LMA.
- Newly initiated flow go though the new LMA.
- Previous flow go though the previous LMA.

Network-based mobility deployment in DMM scenario (cont.)

Analysis

- Partly solve the DMM problem
 - Routing is optimal for the newly initiated flow
 - Routing is still not optimal for the previous established flow
- Other gaps
 - Prefix management of the terminal
 - Source address selection of the terminal
 - draft-liu-dmm-dynamic-anchor-discussion-00
 - draft-liu-dmm-address-selection-00
 - draft-liu-dmm-mobility-api-00

Current practice in 3GPP

• In 3GPP specification, S2a/S2b/S2c could be based on IP mobility protocol.

- S2a: Trust access; PMIP/GTP
- S2b: Un-trusted network based; PMIP/GTP
- S2c: Un-trusted client based.

The LIPA scenario in 3GPP

logical connection for mobile

scope of Local IP access

The LIPA mobility problem

 DMM kind of solution is needed to support Inter L-GW handover Q&A?

Unified view through Reconfiguration of existing functions

3 Basic Internet Functions

- 1. The Internet allocates IPv6 network prefixes or IPv4 addresses to a host.
- 2. The Internet manages information needed for routing by maintaining a database (DNS) and exchanging routing information between routers.
- 3. Router forwards packets using appropriate information in the routing table.

- 3 Basic Mobility Management Functions
- 1. Session identifier allocation (e.g., HoA)
- 2. Location management (LM) (e.g., binding HoA to CoA)
- 3. Mobility routing (MR)

Existing MIPv6 functions

Existing protocols first	Compatibi lity	IPv6 deployme nt	Security considera tions	Distribute d deployme nt	Upper layer transpare ncy when needed	Route optimizati on
Υ	Υ	Υ	Υ	N	N	N

Existing protocols first	Compatib ility	IPv6 deployme nt	Security considera tions	Distribute d deployme nt	Upper layer transpare ncy when needed	Route optimizati on
Υ	Υ	Υ	Υ	N	N	N

functions

Redistribute MIP and PMIP functions in DMM scenario

Existing protocols first	Compati bility	IPv6 deploym ent	Security consider ations	Distribut ed deploym ent	Upper layer transpar ency when needed	Route optimiza tion
Y	Y (supports above)	Y	Y (LM- MR in different networks	Y	N	N

