
1 

Sheer volume and dynamic 
nature of video stresses 
network resources 

PIE: A lightweight latency control to address the 
buffer problem issue   

Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Prabhu, 
Fred Baker and Bill Ver Steeg  
November 5, 2012 



2 

The Problem of Buffer Bloat 

§ Causes of the buffer bloat:   
•  Sheer volume of Internet traffic: explosion of video traffic 
•  Cheap memory: customers want more memory to avoid packet drops 
•  Nature of TCP: the TCP protocol can consume all buffers available 
•  No efficient queue managements: no simple and effective algorithms  
 

§  Lack of a robust, consistent solution will cause:  
 

Delay  
Bloat 

Real Time 
Application 
Impairment 

Poor 
Quality of 

Experience 



3 

water level can 
stay high 

water level can 
also kept low if 

arrival rate = 
departure rate 

or 

big buffer (bucket size) does not have to imply  
high average delay (standing water level) 

If arrival rate = 
departure rate 



4 

Control Average Delay and Allow Big Burst  
Current Design 

•  Feedback signals are sent when buffer 
  occupancy is big 
•  Large TCP flows occupy most buffer 
•  Average delay is consistently long 
•  Little room left for sudden burst 

•  Feedback signals are sent early 
•  Large TCP flows occupy small buffer 
•  Average delay is kept low 
•  Much room left for sudden burst 

Future Goal 



5 

As Easy As PIE!  



6 

§  From what learned from CoDel, control delay instead of queue length 
•  Queue sizes change with link speed and estimation of RTT 
•  Delay is the key performance factor that we want to control 

§  Delay bloat is really the issue. If delay can be controlled to be 
reasonable, buffer bloat is not an issue. As a matter of fact, a lot of 
customers want MORE and MORE buffers for sudden bursts 



7 

§  Design a drop-at-enque algorithm like RED, not drop-at-deque 
algorithm like CoDel 

•  Drops at deque are costly and waste network resources 
•  Require memory speed up: e.g. 10:1 oversubscription would 
require 20x bandwidth speed up to the memory 

§  The algorithm should be simple, easily scalable in both hardware and 
software 

•  Need to work with both UDP and TCP traffic, no need of extra 
queue (which implies extra hardware cost) 

 

 



8 

§  Traditionally drops/marks increase as the queue lengths increase 
(longer delays), which could result in wide swing delay variation 

§  Knowing the direction of the changing latency, we can 
increase stability and modulate the drops/marks intensity to 
reduce latency and jitter.  



9 

Ø Upon every packet departure 
§  depart_count += deque_packet_size; 

Ø Every Tupdate interval 
§  estimated_delay, est_del = queue_length/depart_count*Tupdate 
§  drop_prob += a*(est_del – target_delay) + b* (est_del – est_del_old) 
§  est_del_old = est_del; 
§  depart_count = 0; 

Ø Upon every packet arrival 
§  randomly drop a packet based on drop_prob  

 

a and b are chosen  
via control analysis 



10 

0

0.05

0.1

0.15

0.2

0
0.5

1
1.5

0

10

20

30

40

50

60

70

80

90
Ph

as
e 

M
ar

gi
n

b 

Parameters are self-tuning, no configuration required 



11 

•  Congestested Link Bw: 10Mbps 

•  Packet Size 1.5KB  

•  TCP: Sack1, RTT: 100ms 

•  ECN is not enabled in all tests 

•  Target_Del: 30ms 

•  Linux Version: 3.6 

100Mbps 10Mbps 100Mbps 

5ms 5ms RTT 



12 

Under low load case, 
TCP Sawtooth is 
observable. However, 
PIE can regulate TCP 
flows so well that the link 
is close to full capacity 
while maintaining low 
latency 



13 

CoDel is also able to 
control latency. 
However, low latency 
is achieved at the 
expense of losing 
throughput  



14 

Even if UDP traffic is 
added, PIE handles 
the situation smoothly. 
Latency varies around 
the desired target 
value.    



15 

CoDel can’t control the 
mixture of traffic. 
There is a suggestion 
to use a separate 
queue to handle UDP, 
i.e. fq_codel. We 
believe that, if one 
algorithm can handle 
both cases, there is no 
reason to add extra 
cost of another queue. 



16 

30 Flows 

60 Flows 

90 Flows 

60 Flows 

30 Flows 



17 

Regardless of traffic 
intensity, PIE keeps 
latency around the 
target value by 
adjusting drop 
probability accordingly. 
The feedback loop is 
in tight control.  



18 

CoDel does not work 
well under heavy load. 
Their control 
parameter, count, 
oscillates widely under 
those situations. The 
feedback loop is not 
stable. 



19 

50Mbps 

10Mbps 

50Mbps 



20 

When the queue draining 
rate dips from 50Mbps to 
10Mbps, PIE is able to 
keep the latency low 
throughout the process  



21 

When the queue draining 
rate dips from 50Mbps to 
10Mbps, CoDel can’t 
keep the latency low 
throughout the process  



22 

§  Simulation, theoretical analysis and lab results show that PIE is able to 
•  Ensure low latency under various congestion situations 
•  Achieve high link utilization and maintain stability consistently 
•  A light-weight, enque-based algorithm that works with both TCP and 
UDP traffic. No memory speed up required 
•  Self tune its parameters 

§  More PIE extensive evaluations and release to the community 

 



23 


