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The Problem of Buffer Bloat 

§ Causes of the buffer bloat:   
•  Sheer volume of Internet traffic: explosion of video traffic 
•  Cheap memory: customers want more memory to avoid packet drops 
•  Nature of TCP: the TCP protocol can consume all buffers available 
•  No efficient queue managements: no simple and effective algorithms  
 

§  Lack of a robust, consistent solution will cause:  
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water level can 
stay high 

water level can 
also kept low if 

arrival rate = 
departure rate 

or 

big buffer (bucket size) does not have to imply  
high average delay (standing water level) 

If arrival rate = 
departure rate 
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Control Average Delay and Allow Big Burst  
Current Design 

•  Feedback signals are sent when buffer 
  occupancy is big 
•  Large TCP flows occupy most buffer 
•  Average delay is consistently long 
•  Little room left for sudden burst 

•  Feedback signals are sent early 
•  Large TCP flows occupy small buffer 
•  Average delay is kept low 
•  Much room left for sudden burst 

Future Goal 
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As Easy As PIE!  
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§  From what learned from CoDel, control delay instead of queue length 
•  Queue sizes change with link speed and estimation of RTT 
•  Delay is the key performance factor that we want to control 

§  Delay bloat is really the issue. If delay can be controlled to be 
reasonable, buffer bloat is not an issue. As a matter of fact, a lot of 
customers want MORE and MORE buffers for sudden bursts 
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§  Design a drop-at-enque algorithm like RED, not drop-at-deque 
algorithm like CoDel 

•  Drops at deque are costly and waste network resources 
•  Require memory speed up: e.g. 10:1 oversubscription would 
require 20x bandwidth speed up to the memory 

§  The algorithm should be simple, easily scalable in both hardware and 
software 

•  Need to work with both UDP and TCP traffic, no need of extra 
queue (which implies extra hardware cost) 
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§  Traditionally drops/marks increase as the queue lengths increase 
(longer delays), which could result in wide swing delay variation 

§  Knowing the direction of the changing latency, we can 
increase stability and modulate the drops/marks intensity to 
reduce latency and jitter.  
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Ø Upon every packet departure 
§  depart_count += deque_packet_size; 

Ø Every Tupdate interval 
§  estimated_delay, est_del = queue_length/depart_count*Tupdate 
§  drop_prob += a*(est_del – target_delay) + b* (est_del – est_del_old) 
§  est_del_old = est_del; 
§  depart_count = 0; 

Ø Upon every packet arrival 
§  randomly drop a packet based on drop_prob  

 

a and b are chosen  
via control analysis 
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Parameters are self-tuning, no configuration required 
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•  Congestested Link Bw: 10Mbps 

•  Packet Size 1.5KB  

•  TCP: Sack1, RTT: 100ms 

•  ECN is not enabled in all tests 

•  Target_Del: 30ms 

•  Linux Version: 3.6 

100Mbps 10Mbps 100Mbps 

5ms 5ms RTT 
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Under low load case, 
TCP Sawtooth is 
observable. However, 
PIE can regulate TCP 
flows so well that the link 
is close to full capacity 
while maintaining low 
latency 
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CoDel is also able to 
control latency. 
However, low latency 
is achieved at the 
expense of losing 
throughput  
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Even if UDP traffic is 
added, PIE handles 
the situation smoothly. 
Latency varies around 
the desired target 
value.    
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CoDel can’t control the 
mixture of traffic. 
There is a suggestion 
to use a separate 
queue to handle UDP, 
i.e. fq_codel. We 
believe that, if one 
algorithm can handle 
both cases, there is no 
reason to add extra 
cost of another queue. 
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30 Flows 

60 Flows 

90 Flows 

60 Flows 

30 Flows 
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Regardless of traffic 
intensity, PIE keeps 
latency around the 
target value by 
adjusting drop 
probability accordingly. 
The feedback loop is 
in tight control.  
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CoDel does not work 
well under heavy load. 
Their control 
parameter, count, 
oscillates widely under 
those situations. The 
feedback loop is not 
stable. 
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50Mbps 

10Mbps 

50Mbps 
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When the queue draining 
rate dips from 50Mbps to 
10Mbps, PIE is able to 
keep the latency low 
throughout the process  
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When the queue draining 
rate dips from 50Mbps to 
10Mbps, CoDel can’t 
keep the latency low 
throughout the process  
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§  Simulation, theoretical analysis and lab results show that PIE is able to 
•  Ensure low latency under various congestion situations 
•  Achieve high link utilization and maintain stability consistently 
•  A light-weight, enque-based algorithm that works with both TCP and 
UDP traffic. No memory speed up required 
•  Self tune its parameters 

§  More PIE extensive evaluations and release to the community 
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