Coordinated Forwarding and Caching in Content Centric Networks

Haiyong Xie Xinwen Zhang G. Q. Wang

Huawei Technologies

Contributors

- Arista
 - Shuo Guo
- China Mobile
 - Yunfei Zhang
- Chinese Academy of Sciences
 - Yi Sun
 - Haibin Zhai
 - Hanwen Zhang

- Huawei
 - Guangyu Shi
 - Guoqiang Wang
 - Haiyong Xie
 - Xinwen Zhang

Forwarding & Caching in CCN

- Forwarding & Caching
 - Occurs at different layers
 - Unaware of each other
 - Mutual interactions: No

- Forwarding & Caching
 - Occurs at same layers
 - Aware of each other
 - Mutual interactions: Yes
- Let Forwarding & Caching be *coordinated!*

A Motivating Example

Routing tree is a simplified view of the network, missing important details

 Routing "mesh" is a more realistic view of the network, disclosing more details

A Motivating Example (cont'd)

• Intradomain topology is more like a mesh

 In mesh-like topologies, "horizontal" links could be leveraged to allow caching-aware routing

Coordinating Caching & Forwarding

- Key ideas
 - Let Interest drive where data should be temporarily cached (on the fly)
 - Make such availability information (temporarily cache) accessible by all routers
 - Network-wide OSPF-like announcement does NOT work!
 - Address inconsistencies of interest-driven caching
 - Dual-segment, self-adaptive algorithm to improve efficiency of content store

Coordinating Caching & Forwarding

- FIB consists of
 - Name-based routing
 - which face(s) should be used to reach a given content
 - Infrastructure routing
 - which face(s) should be used to reach a given router
- Availability Info Base
 - Which router(s) a given content is supposed to be available from
- FIB and AIB could be merged

Leverage Content Popularity Info

- Assume that all routers share content popularity information
 - Will cope with inconsistencies later
- Each router can decide what content it should cache locally
 - Store ranking sequence in "Availability Info Base" (AIB)
 - Chose the set of content that have the minimum "cost" in the ranking sequence, fill up its content store (optimality proof in the paper)
 - Cost information is available through OSPF announcements

Handle Inconsistency

- Inconsistent popularity can lead to inefficiency
 - R2's actual popularity is different from R3's
 - R3 thinks R2 has content f, but actually R2 does not!

Handle Consistency (cont'd)

- Divide the content store into two parts
 - Part 1 corresponds to normal popularity ranking
 - Part 2 corresponds to "abnormal" inconsistent popularity ranking
 - ACS Misses on requests forwarded from peer routers suggest that a content be abnormal
- Design two-segment, self-adaptive algorithm to dynamically adjust the boundary between ACS/CCS
 - See our paper for details

Summary

- Consider cache availability in forwarding in CCN
 - Which maximally leverages in-network cache capability
- Extend router architecture to support coordinated forwarding and caching
- Dual-segment algorithm for optimizing the effectiveness

Thank You!

Backup Slides

Evaluations

- Algorithms
 - Global coordinated caching (GCC)
 - Local coordinated caching (LCC), a localized version of GCC
 - Hierarchical coordinated caching (HIE)
- Methodology
 - Simulation on real network topologies
 - Topologies: Abilene, GEANT, CERNET
- Metrics
 - Average access cost
 - Miss ratio

Average Access Cost

- GCC/LCC are significantly better than HIE
- LCC is very close to the performance of GCC
 - In practice, LCC incurs lower control overhead and thus is preferable

Average Miss Rate

- GCC/LCC's miss rates are significantly lower than HIE
- Miss rates of GCC/LCC have negligible differences
 - LCC is more preferable due to lower overhead

Impacts of Inconsistency

- Inconsistency has no impacts on HIE (of course no!)
- Average access cost by GCC/LCC increases gradually when inconsistency level increases

- Increase in access cost is low