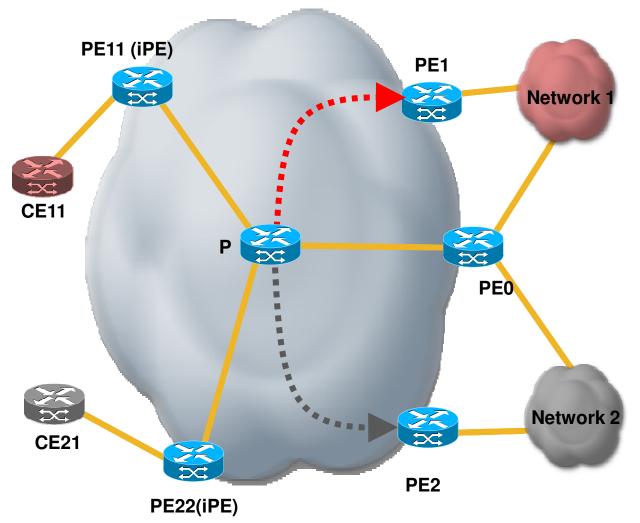
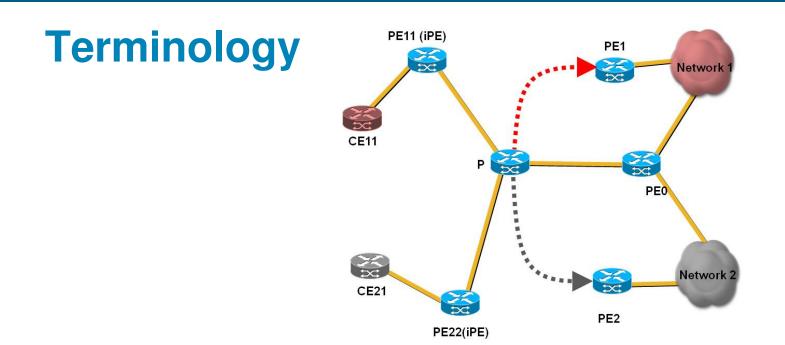
BGP Edge Node FRR


1

Ahmed Bashandy

Agenda

- Problem and Requirements
- 3 BGP-FRR Solutions
 - Solution 1: draft-bashandy-bgp-edge-node-frr-o3
 - Solution 2: draft-bashandy-bgp-frr-vector-label-oo
 - Solution 3: draft-bashandy-bgp-frr-mirror-table-oo
- Comparison (if we have time)
 - Qualitative Comparison
 - Quantitative Comparison
 - Two main advantages and disadvantages of each solution


Problem

- PE0 is primary for both **Red** and **Grey**.
- P router redirects traffic to the *correct* repair PE
 - PE1 for Red
 - PE2 for Gray
- Correct **BGP label** must exist for correct forwarding on repair PE

Main Requirements

- Must have
 - Core remains BGP free
 - Minimize provisioning
 - Correct BGP label must exist when repairing
 - No multi-label lookup at steady state
- Should Have
 - IGP FRR not required
 - Works with MPLS and IP core
 - Minimal churn in the network
 - Minimal additional state in the network
 - Resistance to misconfig
- Good to have
 - No multilabel lookup even during repair
 - No churn in the network, only routers willing to participate gets some churn

- Protected PE (**pPE**): A PE protected by BGP FRR (E.g. router PE0)
- Protected next-hop: (**pNH**): It is an IPv4 or IPv6 host address belonging to the protected egress PE. Traffic tunneled to this IP address will be protected by BGP FRR
- Repair PE (rPE): It is an egress PE other than the primary egress PE that can reach the protected prefix P/m through an external neighbor (E.g. routers PE1 and PE2)
- Repair next-hop (**rNH**): It is an IPv4 or IPv6 host address belonging by to the repair PE
- Repairing P router (rP): A core router that attempts to restore traffic when it detects, through local means, that the primary egress PE is no longer reachable without waiting for IGP or BGP to re-converge (E.g. router P)
- Ingress PE (iPE): A PE router that receives external traffic and forwards it outside the AS through a pPE (e.g. routers PE11 and PE22)

Overview of the Solutions

Scalable BGP FRR Protection against Edge Node Failure

draft-bashandy-bgp-edge-node-frr-03

Authors :

Ahmed Bashandy, Cisco Systems Burjiz Pithawala, Cisco Systems Keyur Patel, Cisco Systems Presenter :

Ahmed Bashandy

IETF85, Nov/2012

Atlanta, USA

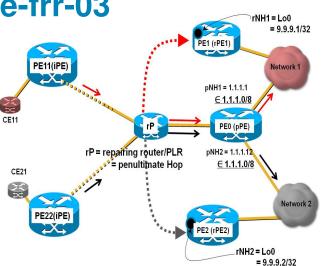
BGP FRR

Ahmed Bashandy

IETF 85. Nov/2012, Atlanta, USA

Solution 1: draft-bashandy-bgp-edge-node-frr-03 Control Plane

♦ rPE:


- Allocates a repair label rL per CE
- Advertises rL with protected prefixes

♦ pPE:

- Allocates a distinct pNH for all prefixes protected by the same rPE
- Advertise/Re-advertises prefixes with (pNH, rL) to iPEs
- Advertises (pNH, rNH) to rP

♦ rP:

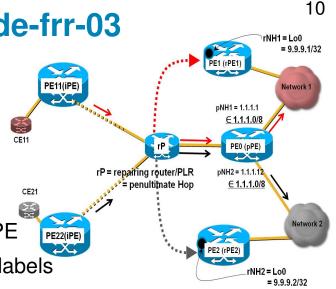
- Advertises pNH with the maximum metric
- Programs alternate path label swap pNHL -> rNHL

Solution 1: draft-bashandy-bgp-edge-node-frr-03 *Data Plane*

iPE:

Pushes three labels: vpnL, rL*, pNHL

Normal working conditions – steady state


- rP: pops two labels (rL, pNHL) and delivers packet to pPE
- **pPE** will pop two labels if **rP** is not capable of popping 2 labels
- Other nodes: standard behavior

pPE failure event – transient state

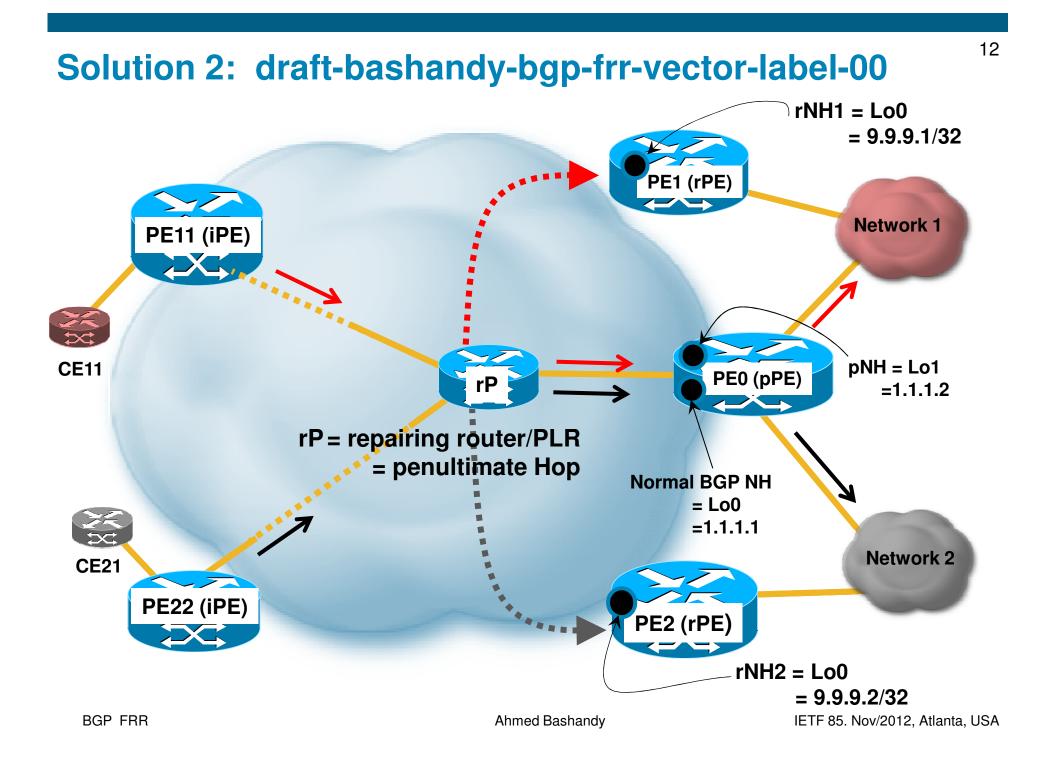
- rP:
 - swaps **pNHL** with **rNHL**
 - Re-routes traffic to rNH

• rPE:

- Receives traffic with rL as top label**
- pops two labels (rL, vpnL),
- looks up rL and forwards to the correct CE
- Other nodes: standard behavior

BGP FRR Protection against Edge Node Failure Using Vector Labels

draft-bashandy-bgp-frr-vector-label-00


Authors :

Ahmed Bashandy, Cisco Systems Maciek Konstantynowicz, Cisco Systems Nagendra Kumar, Cisco Systems Presenter :

Ahmed Bashandy

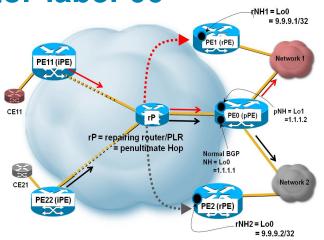
IETF85, Nov/2012

Atlanta, USA

Solution 2: draft-bashandy-bgp-frr-vector-label-00 Control Plane

♦ rPE:

- Allocates a repair label rL per CE
- Advertises rL with protected prefixes


♦ pPE:

- Allocates a a vector label vL for every rPE
- Configure/auto-assign* a <u>single</u> protected next-hop **pNH** for the entire router
- Advertises (*rNH, vL*) binding to iPEs
 - e.g. can be done similar to biscuit tunnel "rfc5512"
- Advertises (*pNH*, *rNH*, *vL*) binding to rP

♦ rP:

BGP FRR

- Advertises pNH with the maximum metric
- A separate label context per pNH (i.e. per pPE)
- In the context of **pNH**
 - Programs repair path: swap vL → rNHL

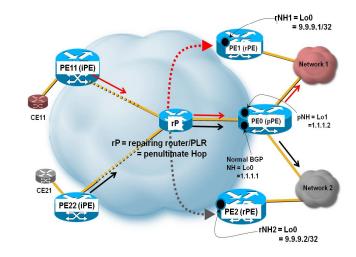
Solution 2: draft-bashandy-bgp-frr-vector-label-00 *Forwarding Plane*

lipe:

- For each protected prefix
 - Chooses the **rPE*** and the corresponding **vL** and **rL**
- Pushes four labels: vpnL, rL, vL, pNHL**

Normal working conditions – steady state

• rP:


- pops three labels (rL, vL, pNHL)
- Delivers the packet to pPE
- Other nodes: standard behavior

pPE failure event – transient state

- **rP**: Looks up **vL** in the label context of **pNH**
 - Re-routes traffic via repair path to **rNH**
 - swaps vL with rNHL
 - Send packet to rNH

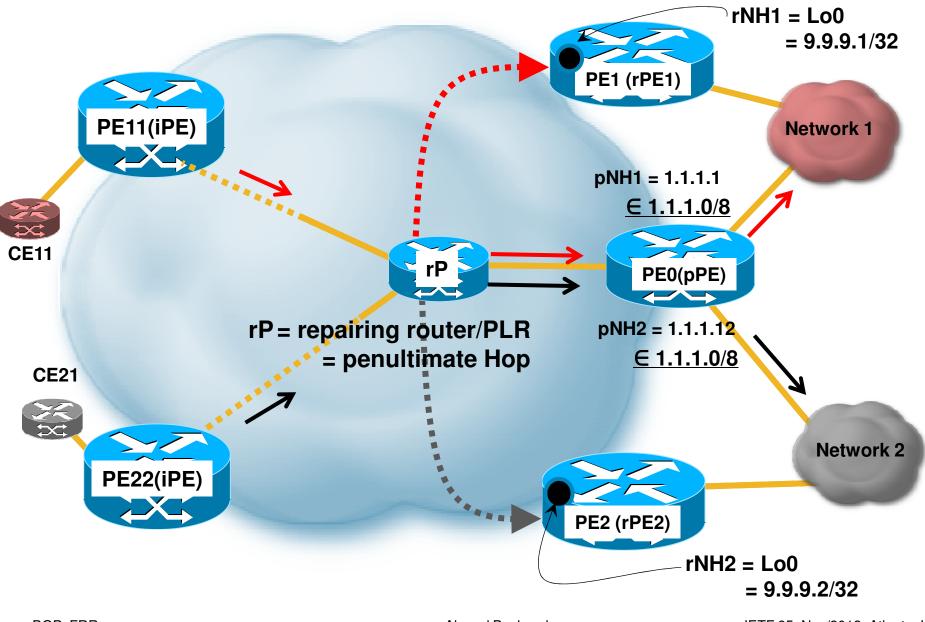
• rPE:

- Receives traffic with **rL** as top label
- pops two labels (rL,vpnL),
- looks up rL
- and forwards to the correct CE
- Other nodes: standard behavior

BGP FRR Protection against Edge Node Failure Using Table Mirroring with Context Labels

draft-bashandy-bgp-frr-mirror-table-00

Authors :

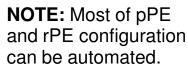

Ahmed Bashandy, Cisco Systems Maciek Konstantynowicz, Cisco Systems Nagendra Kumar, Cisco Systems Presenter :

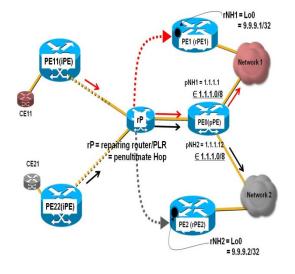
Ahmed Bashandy

IETF85, Nov/2012

Atlanta, USA

Solution 5: draft-bashandy-bgp-frr-mirror-table-00


Solution 5: draft-bashandy-bgp-frr-mirror-table-00 Control Plane

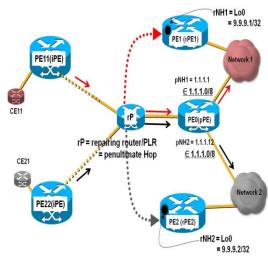

PE:

- configure a distinct pNH for every distinct rPE
- Advertise **pNH** as the BGP next-hop for all prefixes protected by **rPE**

♦ rPE:

- configure repair function for prefixes with pNH as their BGP nexthop
- Allocates a distinct context label cL for every distinct pNH
- Mirrors prefixes with **pNH** as a BGP next-hop in the label context identified by **cL**
- Advertises the **pNH** with high metric (e.g. max-metric 1)
- Advertises (pNH, rNH, cL) to rP*
- Advertises the label "cL" for pNH instead of the usual implicit NULL**

Solution 5: draft-bashandy-bgp-frr-mirror-table-00 Forwarding Plane


Normal working conditions – steady state

All nodes: standard behavior

pPE failure event – transient state

●rP:

- Pops the label for pNH
- Pushes cL and re-routes traffic to rPE
- **rPE:** Uses **cL** to identify the mirrored label
 - Looks up **vpnL** in the context of pPE,
 - finds the match with its local VPN table,
 - forwards the packet
- All other nodes: standard behavior

The Comparison

General Notes

Solution 1, 2, 3

- Can co-exist in the same network and even on the same pPE, rPE, and rP
 - This can be done by having different attributes for advertising (pNH, rNH, vL), (pNH, rNH, rL)
- No need for LFA support in the core
- No need for explicit routing: Work in both MPLS and IP core

BGP FRR

Label Swap/Pop/push Comparison at Steady State²²

Node	draft-bashandy-bgp- edge-node-frr-03	draft-bashandy-bgp- frr-vector-label-00	draft-bashandy-bgp-frr- mirror-table-00
pPE	No Change: Pop (1)	No Change: Pop (1)	No Change: Pop (1)
PHP	Pop 2	Pop 3	No change: Pop (1)
iPE	Push 3	Push 4	No Change: Push (2)

Label Swap/Pop/push Comparison at Failure

Node	draft-bashandy-bgp- edge-node-frr-03	draft-bashandy-bgp-frr- vector-label-00	draft-bashandy- bgp-frr-mirror- table-00
rPE	Pop (2)	Pop (2)	Pop (2)
rP	No Change: Swap (1)	Swap (2)	Swap (2)

Factor	draft-bashandy-bgp- edge-node-frr-03	draft-bashandy- bgp-frr-vector- label-00	draft-bashandy-bgp- frr-mirror-table-00
Loop Free re- routing on failure	Yes	Yes	Yes
Core remains BGP-free	Yes	Yes	Yes
Simple config	Medium because of the need to configure non-overlapping IP range	Yes	NO: because of the need to configure non-overlapping IP range or distinct pNHs on rPE and pPE
Correct VPN label when repairing	Yes	Yes	Yes
Immunity to misconfig	Yes	Yes	Yes/No*
Per-prefix label allocation	Yes	Yes	No because of mirroring

Factor	draft-bashandy-bgp- edge-node-frr-03	draft-bashandy- bgp-frr-vector- label-00	draft-bashandy-bgp- frr-mirror-table-00
Works with any tunneling protocol	Yes	Yes	Yes*
Single label lookup during <u>steady state</u>	Yes	Yes	Yes
Single label lookup during repair**	Yes	No	No
Minimal Churn in the network	Medium	Yes	If the pNH are configured, then no churn
Extra state in the core	Medium***	Small	Medium***
Works on networks <u>without</u> IP FRR or TE FRR	Yes	Yes	Yes

Factor	draft- bashandy-bgp- edge-node- frr-03	draft-bashandy- bgp-frr-vector- label-00	draft-bashandy-bgp- frr-mirror-table-00
No Churn except on nodes participating in the solution	No*	Yes	If the pNH are configured, then no churn
No New Code on Penultimate Hop	No	No	No**
No New Code on Ingress PE	No	No	Yes
No New Label Pop Semantics	No	No	Yes
Repair is not another path to the same FEC***	Yes	Yes	Yes

Factor	draft-bashandy- bgp-edge-node- frr-03	draft-bashandy- bgp-frr-vector- label-00	draft-bashandy- bgp-frr-mirror- table-00
Ability to support per- CE label binding on the primary path	Yes	Yes	Yes
Forwarding Plane Complexity	Simple: The only additional complexity is popping 2 labels instead of 1	Medium <u>during repair</u> only because of vector label lookup	Medium <u>during repair</u> only because of context label lookup
Summary (Green = 1 Yellow = 2, Red = 3)	30	28	30

Quantitative Comparison: Factors

Additional Entries in the IP table

 The additional IP prefixes inserted in the FIB or RIB because of employing the BGP FRR scheme

Additional Entries in the label table:

The extra labels inserted in the FIB

Additional BGP Mapping entries:

- Certain mappings are needed for BGP on a PE to maintain and advertise certain attributes to other PEs.
- For example,
 - when rPE allocates a repair label "rL" on per-CE basis, then it needs to maintain one mapping entry
 - All prefixes reachable via this CE point to this mapping entry
 - This way BGP can advertise "rL" as an optional attribute to other PEs

Quantitative Comparison: Parameters

- N(pPE): Total Number of protected PEs in the network
- N(rPE/pPE): Average number of repair PEs protecting the routes on a given protected PE.
- N(pPE/rPE): Average the number of protected PEs that a given repair PE protects
- N(VPN/pPE): Average number of VPNs connected to a protected PE
- N(rPE/VPN): Average number of repair PEs needed to protect all the routes belonging to a single VPN on a pPE.
 - For example, Suppose a VPN has 1000 prefixes and connected to the protected router PE0.
 - Suppose that 500 of the prefixes are reachable also via PE1 and the other 500 prefixes are also reachable via PE2
 - In that case, on the protected PE, N(rPE/VPN) = 2

N(VPN/rPE): Average number of VPNs connected to a repair PE

Quantitative Comparison: Formulas for pPE

Solution	Extra IP FIB	Exra LFIB	Extra BGP mappings
Solution 1: draft- bashandy-bgp- edge-node-frr- 03	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE)	N(rPE/pPE)
Solution 2: draft- bashandy-bgp- frr-vector- label-00	1 × N(pPE)	1 × N(pPE)	N(rPE/pPE)
Solution 3: draft- bashandy-bgp- frr-mirror- table-00	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE)	N(rPE/pPE)

Quantitative Comparison: Formula for rP/PH

Solution	Extra IP FIB	Exra LFIB	Extra BGP mappings
Solution 1: draft- bashandy-bgp- edge-node-frr- 03	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE)	zero
Solution 2: draft- bashandy-bgp- frr-vector- label-00	N(pPE)	N(pPE) × N(rPE/pPE) <u>Or</u> N(rPE)	Zero
Solution 3: draft- bashandy-bgp- frr-mirror- table-00	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE)	Zero

Quantitative Comparison: Formula for rPE/Protector

Solution	Extra IP FIB	Exra LFIB	Extra BGP mappings
Solution 1: draft- bashandy-bgp- edge-node-frr- 03	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE) + N(VPN/rPE)	N(VPN/rPE)
Solution 2: draft- bashandy-bgp- frr-vector- label-00	N(pPE)	N(pPE) + N(VPN/rPE)	N(VPN/rPE)
Solution 3: draft- bashandy-bgp- frr-mirror- table-00	N(pPE) × N(rPE/pPE)	N(pPE/rPE) × N(VPNs/pPE) + N(pPE) × N(rPE/pPE)*	Zero

Quantitative Comparison: Formula for Solution Agnostic Nodes

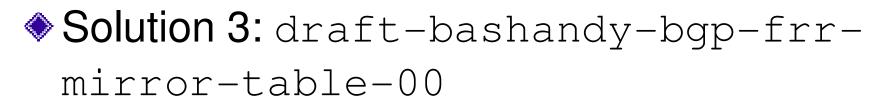
Solution	Extra IP FIB	Exra LFIB	Extra BGP mappings
Solution 1: draft- bashandy-bgp- edge-node-frr- 03	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE)	Zero
Solution 2: draft- bashandy-bgp- frr-vector- label-00	N(pPE)	N(pPE)	Zero
Solution 3: draft- bashandy-bgp- frr-mirror- table-00	N(pPE) × N(rPE/pPE)	N(pPE) × N(rPE/pPE)	Zero

Main Two Advantages of each Solution

- Solution 1: draft-bashandy-bgp-edgenode-frr-03
 - Simple forwarding plane
 - No switching performance drop even during failure
- Solution 2: draft-bashandy-bgp-frrvector-label-00
 - Simplest Provisioning
 - Maximum scalability:
 - No single node need to maintain all or most of state
 - Minimum churn in the network*

Main Two Advantages of each Solution

Solution 3: draft-bashandy-bgpfrr-mirror-table-00


No need to upgrade Ingress PE

•Easy to use a centralized router*

Main Two Disadvantages of each Solution

- Solution 1: draft-bashandy-bgp-edgenode-frr-03
 - The additional state injected in the network
 - Some Configuration complexity: Need to configure non-overlapping address ranges on different pPEs
- Solution 2: draft-bashandy-bgp-frrvector-label-00
 - Non-trivial forwarding plane: Need to pop 3 labels at steady state
 - Need to upgrade iPE, pPE, and PHP

Main Two Disdvantages of each Solution

- •The additional state injected in the network
- Configuration complexity: Need to configure correct pNH on rPE and pPE
 - Or else need to re-advertise some or all of the protected prefixes