HEADER SPACE ANALYSIS: STATIC CHECKING FOR NETWORKS

Peyman Kazemian (Stanford University) George Varghese (UCSD, Yahoo Labs)

Nick McKeown (Stanford University)

November 7th, 2012 IRTF

MOTIVATION

- It is hard to understand and reason about endto-end behavior of networks:
 - Can host A talk to host B?
 - What are all the packet headers from A that can reach B?
 - Are there any loops or black holes in the network?
 - Is Slice X isolated totally from Slice Y?
 - What will happen if I remove an entry from a router?

MOTIVATION

• There are two reason for this complexity:

- Networks are getting larger.
- Network functionality becoming more complex.
 - Firewalls, ACLs and deep packet inspection MBs.
 - VLAN and inter-VLAN routing.
 - Encapsulation (MPLS, GRE).
 - ToS-based routing.
 - nondeterministic routing.

LOOKING AT THE OTHER FIELDS

Communication Systems:

HEADER SPACE ANALYSIS

A <u>simple abstraction</u> to model all kinds of forwarding functionalities regardless of specific protocols and implementations.

SIMPLE OBSERVATION: A PACKET IS A POINT IN THE SPACE OF POSSIBLE HEADERS AND A BOX IS A TRANSFORMER ON THAT SPACE.

• Step 1 - Model packet header as a point in $\{0,1\}^L$ space – The Header Space

• Step 2 – Model all networking boxes as transformer of header space

• Example: Transfer Function of an IPv4 Router

- 172.24.74.0 255.255.255.0 Port1
- 172.24.128.0 255.255.255.0 Port2
- 171.67.0.0 255.255.0.0 Port3

$$T(h, p) = \begin{cases} (h,1) & \text{if dst_ip}(h) = 172.24.74.x \\ (h,2) & \text{if dst_ip}(h) = 172.24.128.x \\ (h,3) & \text{if dst_ip}(h) = 171.67.x.x \end{cases}$$

• Example: Transfer Function of an IPv4 Router

- 172.24.74.0 255.255.255.0 Port1
- 172.24.128.0 255.255.255.0 Port2
- 171.67.0.0 255.255.0.0 Port3

$$\frac{1}{\sqrt{3}}$$

$$T(h, p) = \begin{cases} (dec_ttl(h), 1) \\ (dec_ttl(h), 2) \\ (dec_ttl(h), 3) \end{cases}$$

if dst_ip(h) = 172.24.74.x if dst_ip(h) = 172.24.128.x if dst_ip(h) = 171.67.x.x

• Example: Transfer Function of an IPv4 Router

- 172.24.74.0 255.255.255.0 Port1
- 172.24.128.0 255.255.255.0 Port2
- 171.67.0.0 255.255.0.0 Port3

$$\frac{1}{\sqrt{3}}$$

$$T(h, p) = \begin{cases} (rw_mac(dec_ttl(h), next_mac), 1) & \text{if } dst_ip(h) = 172.24.74.x \\ (rw_mac(dec_ttl(h), next_mac), 2) & \text{if } dst_ip(h) = 172.24.128.x \\ (rw_mac(dec_ttl(h), next_mac), 3) & \text{if } dst_ip(h) = 171.67.x.x \end{cases}$$

EXAMPLE RULES:

• FWD & RW: rewrite bits 0-2 with value 101

• (h & 000111...) | 101000...

Encapsulation: encap packet in a 1010 header.
(h >> 4) | 1010....

• Decapsulation: decap 1010xxx... packets

• (h << 4) | 000...xxxx

• Load Balancing:

• $LB(h,p) = \{(h,P_1),...(h,P_n)\}$

12

• Properties of transfer functions

• Composable: $T_3(T_2(T_1(h, p)))$

- Step 3 Develop an algebra to work on these spaces.
- Every object in Header Space, can be described by union of Wildcard Expressions.
- We want to perform the following set operations on wildcard expressions:
 - Intersection
 - Complementation
 - Difference

• Finding Intersection:

- Bit by bit intersect using intersection table:
 - Example: $10xx \cap 1xx0 = 10x0$
 - If result has any 'z', then intersection is empty:
 - Example: $10xx \cap 0xx1 = z0x1 = \phi$

• See the paper for how to find complement and difference.

FRAMEWORK

16

WE DEVELOPED SO FAR

• Can host A talk to B?

• Is there a loop in the network?

- Inject an all-x text packet from every switch-port
- Follow the packet until it comes back to injection port

• Is the loop infinite?

Finite Loop

Infinite Loop

?

• Are two slices isolated?

• What do we mean by slice?

- Fixed Slices: VLAN slices
- Programmable Slices: slices created by FlowVisor

• Why do we care about isolation?

- Banks: for added security.
- Healthcare: to comply with HIPAA.
- GENI: to isolate different experiments running on the same network.

- Are two slices isolated?
 - 1) slice definitions don't intersect.
 - 2) packets do not leak.

- A Powerful General Foundation that gives us
 - A common model for all packets
 - > Header Space.
 - A unified view of almost all type of boxes.
 - > Transfer Function.
 - A powerful interface for answering different questions about the network.
 - > T(h,p) and T⁻¹(h,p)
 - > Set operations on Header Space

IMPLEMENTATION AND EVALUATION

23

IMPLEMENTATION

• Header Space Library (Hassel)

- Written in Python and C.
- Implements Header Space Class
 - Set operations
- Implements Transfer Function Class
 - T and T⁻¹
- Implements Reachability, Loop Detection and Slice Isolation checks.
 - < 50 lines of code
- Includes a Cisco IOS parser, Juniper Junos Parser and OpenFlow table dump parser.
 - Generates transfer function from CLI output.
 - Keeps the mapping from Transfer function rule to line number in the CLI output.
- Publicly available: git clone https://bitbucket.org/peymank/hassel-public.git

STANFORD BACKBONE NETWORK

STANFORD BACKBONE NETWORK

• Loop detection test – run time < 10 minutes on a single laptop.

Performance

Performance result for Stanford Backbone Network on a single machine: 4 core, 4GB RAM.

	Python	С
Generating TF Rules	$\sim 150 \text{ sec}$	-
Loop Detection Test (30 ports)	$\sim 560 m ~sec$	$\sim 5 \mathrm{sec}$
Average Per Port	~18 sec	~40ms
Min Per Port	~8 sec	~2ms
Max Per Port	~135 sec	~1sec
Reachability Test (Avg)	~13 sec	~40ms

NEXT STEPS

• Automatic Test Packet Generation (To appear in CoNEXT 2012).

- Uses HSA model to Generate minimum number of test packets to maximally cover all the "rules" in the network. (Data Plane Testing)
- One error detected, find the location of error in data plane.

• NetPlumber: Real Time Network Policy Checker.

- A tool to run HSA-style checks in real time by incrementally updating results as network changes.
- Achieve on average, sub-ms run time per update for checking more than 2500 pairwise reachability checks on Google WAN.

SUMMARY

• Introduced Header Space Analysis As

- A common model for all packets (Header Space).
- A unified view of almost all type of boxes. (Transfer Function.)
- A powerful interface for answering different questions about the network. (T, T⁻¹, Header Space Set Algebra)
- Showed that direct implementation of HSA algorithms scales well to enterprise-size networks.

Thank You!

Questions?

COMPLEXITY

• Run time

Reachability: O(dR²)

Loop Detection: O(dPR²)

- R: maximum number of rules per box.
- d: diameter of network.
- P: number of ports to be tested

Slice Isolation Test: O(NW²)

- W: number of wildcard expressions in definition of a slice.
- N: number of slices in the network.

See paper for more details.

COMPLEXITY OF REACHABILITY AND LOOP DETECTION TESTS

 $\mathbf{C}^{2}\mathbf{R}$

 $c^2R/9$

 $c^2 R/9$

32

• Run time

Reachability: O(dR²)

Loop Detection: O(dPR²)

- R: maximum number of rules per box.
- d: diameter of network.
- P: number of ports to be tested

Assumption: Linear Fragmentation

