
HEADER SPACE ANALYSIS:
STATIC CHECKING FOR

NETWORKS

Peyman Kazemian (Stanford University)

George Varghese (UCSD, Yahoo Labs)

Nick McKeown (Stanford University)

November 7th, 2012

IRTF
1

MOTIVATION

¢  It is hard to understand and reason about end-
to-end behavior of networks:
�  Can host A talk to host B?
�  What are all the packet headers from A that can reach

B?
�  Are there any loops or black holes in the network?
�  Is Slice X isolated totally from Slice Y?
�  What will happen if I remove an entry from a router?

2

MOTIVATION

¢ There are two reason for this complexity:

�  Networks are getting larger.
�  Network functionality becoming more

complex.
¢  Firewalls, ACLs and deep packet inspection MBs.
¢  VLAN and inter-VLAN routing.
¢  Encapsulation (MPLS, GRE).
¢  ToS-based routing.
¢  nondeterministic routing.

3 Access

Internet

Transport

Application

LOOKING AT THE OTHER FIELDS

Communication Systems:

4

S D
Frequency
Modulatio

n
Amplifier Antenna

De-
Modulatio

n
Antenna Band Pass Filter

Cos(wt) Cos(wt)

HEADER SPACE ANALYSIS

 A simple abstraction to model all kinds of
forwarding functionalities regardless of specific
protocols and implementations.

5

HEADER SPACE FRAMEWORK

SIMPLE OBSERVATION: A PACKET IS A POINT IN THE
SPACE OF POSSIBLE HEADERS AND A BOX IS A
TRANSFORMER ON THAT SPACE.

6

HEADER SPACE FRAMEWORK

¢ Step 1 - Model packet header as a point in {0,1}L
space – The Header Space

7

01110011…1

L

Header Data
0xxxx0101xxx

HEADER SPACE FRAMEWORK

¢  Step 2 – Model all networking boxes as transformer of
header space

8

Packet
Forwarding

1

2

3

0xx1..x1
Match

+ Send to port 3
Rewrite with 1xx011..x1

Action
11xx..0x + Send to port 2

Rewrite with 1x01xx..x1

1110..00

1101..00

Transfer Function:
 T : (hin, pin) −→ {(h1, p1), (h2, p2), . . . , (hn, pn)}

HEADER SPACE FRAMEWORK

¢ Example: Transfer Function of an IPv4 Router

�  172.24.74.0 255.255.255.0 Port1
�  172.24.128.0 255.255.255.0 Port2
�  171.67.0.0 255.255.0.0 Port3

9

1

3

2

(h,1) if dst_ip(h) = 172.24.74.x

(h,2) if dst_ip(h) = 172.24.128.x

(h,3) if dst_ip(h) = 171.67.x.x

T(h, p) =

HEADER SPACE FRAMEWORK

¢ Example: Transfer Function of an IPv4 Router

�  172.24.74.0 255.255.255.0 Port1
�  172.24.128.0 255.255.255.0 Port2
�  171.67.0.0 255.255.0.0 Port3

10

1

3

2

(dec_ttl(h),1) if dst_ip(h) = 172.24.74.x

(dec_ttl(h),2) if dst_ip(h) = 172.24.128.x

(dec_ttl(h),3) if dst_ip(h) = 171.67.x.x

T(h, p) =

HEADER SPACE FRAMEWORK

¢ Example: Transfer Function of an IPv4 Router

�  172.24.74.0 255.255.255.0 Port1
�  172.24.128.0 255.255.255.0 Port2
�  171.67.0.0 255.255.0.0 Port3

11

1

3

2

(rw_mac(dec_ttl(h),next_mac) , 1) if dst_ip(h) = 172.24.74.x

(rw_mac(dec_ttl(h),next_mac) , 2) if dst_ip(h) = 172.24.128.x

(rw_mac(dec_ttl(h),next_mac) , 3) if dst_ip(h) = 171.67.x.x

T(h, p) =

EXAMPLE RULES:

¢ FWD & RW: rewrite bits 0-2 with value 101
�  (h & 000111…) | 101000…

¢ Encapsulation: encap packet in a 1010 header.
�  (h >> 4) | 1010….

¢ Decapsulation: decap 1010xxx… packets
�  (h << 4) | 000…xxxx

¢ Load Balancing:
�  LB(h,p) = {(h,P1),…(h,Pn)} 12

HEADER SPACE FRAMEWORK

¢ Properties of transfer functions

�  Composable:

�  Invertible:

13

T1(h, p)

R1 R2 R3

T2(h, p)
T3(h, p)

T3(T2(T1(h, p)))

Domain (input) Range (output)

TT−1

T2(T1(h, p))

T3(T2(T1(h, p)))

HEADER SPACE FRAMEWORK

¢ Step 3 - Develop an algebra to work on these
spaces.

¢ Every object in Header Space, can be described
by union of Wildcard Expressions.

¢ We want to perform the following set operations
on wildcard expressions:
�  Intersection
�  Complementation
�  Difference

14

HEADER SPACE FRAMEWORK

¢ Finding Intersection:
�  Bit by bit intersect using intersection table:

¢  Example:
¢  If result has any ‘z’, then intersection is empty:
¢  Example:

¢ See the paper for how to find complement and
difference.

15

10xx ∩ 1xx0 = 10x0

10xx ∩ 0xx1 = z0x1 = φ

USE CASES OF HEADER SPACE
FRAMEWORK

THESE ARE ONLY SOME EXAMPLE USE CASES THAT
WE DEVELOPED SO FAR…

16

USE CASES

¢ Can host A talk to B?

17

Box 1
Box 2

Box 3 Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A)) U T3(T4(T1(X,A))

T-1
3

T-1
3

T-1
4

T-1
2 T-1

1

T-1
1

All Packets that A can use to communicate with B

USE CASES

¢  Is there a loop in the network?
�  Inject an all-x text packet from every switch-port
�  Follow the packet until it comes back to injection port

18

Box 1

Box 2

Box 3

Box 4

T1(X,P)
T2(T1(X,P))

T3(T2(T1(X,P)))
T4(T3(T2(T1(X,P))))

Original HS

Returned HS

T-1
4

T-1
3

T-1
2

T-1
1

USE CASES

¢  Is the loop infinite?

19

Finite Loop Infinite Loop ?

USE CASES

¢ Are two slices isolated?

¢ What do we mean by slice?
�  Fixed Slices: VLAN slices
�  Programmable Slices: slices created by FlowVisor

¢ Why do we care about isolation?
�  Banks: for added security.
�  Healthcare: to comply with HIPAA.
�  GENI: to isolate different experiments running on the

same network.
20

USE CASES

¢ Are two slices isolated?
�  1) slice definitions don’t intersect.
�  2) packets do not leak.

21

Box 1

Box 2

Box 3

Box 4

HEADER SPACE FRAMEWORK

¢ A Powerful General Foundation that
gives us
�  A common model for all packets

Ø  Header Space.

�  A unified view of almost all type of boxes.
Ø  Transfer Function.

�  A powerful interface for answering different
questions about the network.
Ø  T(h,p) and T-1(h,p)
Ø  Set operations on Header Space

22

IMPLEMENTATION AND
EVALUATION

23

IMPLEMENTATION

¢ Header Space Library (Hassel)
¢  Written in Python and C.
¢  Implements Header Space Class

¢  Set operations
¢  Implements Transfer Function Class

¢  T and T-1

¢  Implements Reachability, Loop Detection and Slice Isolation
checks.
¢  < 50 lines of code

¢  Includes a Cisco IOS parser, Juniper Junos Parser and
OpenFlow table dump parser.
¢  Generates transfer function from CLI output.
¢  Keeps the mapping from Transfer function rule to line

number in the CLI output.
¢  Publicly available: git clone https://bitbucket.org/peymank/hassel-public.git

24

STANFORD BACKBONE NETWORK

25

~750K IP fwd rule.
~1.5K ACL rules.

~100 Vlans.
Vlan forwarding.

STANFORD BACKBONE NETWORK

¢ Loop detection test – run time < 10 minutes on a
single laptop.

26

Vlan RED
Spanning

Tree

Vlan BLUE
Spanning

Tree

PERFORMANCE

27

Python C

Generating TF Rules ~150 sec -

Loop Detection Test (30 ports) ~560 sec ~5 sec

Average Per Port ~18 sec ~40ms

Min Per Port ~8 sec ~2ms

Max Per Port ~135 sec ~1sec

Reachability Test (Avg) ~13 sec ~40ms

Performance result for Stanford Backbone Network on a
single machine: 4 core, 4GB RAM.

NEXT STEPS

¢ Automatic Test Packet Generation (To appear in

CoNEXT 2012).
�  Uses HSA model to Generate minimum number of test

packets to maximally cover all the “rules” in the
network. (Data Plane Testing)

�  One error detected, find the location of error in data
plane.

¢ NetPlumber: Real Time Network Policy Checker.
�  A tool to run HSA-style checks in real time by

incrementally updating results as network changes.
�  Achieve on average, sub-ms run time per update for

checking more than 2500 pairwise reachability checks
on Google WAN.

28

SUMMARY

¢ Introduced Header Space Analysis As
�  A common model for all packets (Header Space).

�  A unified view of almost all type of boxes. (Transfer
Function.)

�  A powerful interface for answering different
questions about the network. (T, T-1, Header Space Set
Algebra)

¢  Showed that direct implementation of HSA
algorithms scales well to enterprise-size networks.

29

Thank You!

Questions?

30

COMPLEXITY

31

¢  Run time
Reachability: O(dR2)

Loop Detection: O(dPR2)
�  R: maximum number of rules per box.
�  d: diameter of network.
�  P: number of ports to be tested

Slice Isolation Test: O(NW2)
�  W: number of wildcard expressions in definition of a slice.
�  N: number of slices in the network.

See paper for more details.

COMPLEXITY OF REACHABILITY AND LOOP
DETECTION TESTS

32

¢  Run time
Reachability: O(dR2)

Loop Detection: O(dPR2)
�  R: maximum number of rules per box.
�  d: diameter of network.
�  P: number of ports to be tested
Assumption: Linear Fragmentation

R
cR/3

cR/3

cR/3

c2R/9
c2R/9

c2R/9

c2R/9

c2R/9

c2R/9

c2R/9

c2R/9

c2R/9

c2R

cR
E1 : Match M1,..
E2 : Match M2,..
E3 : Match M3,..

.

.

.
ER : Match MR,..

W1,..WR
W1,..WR
W1,..WR

W1,..WR

W1,..WR

