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MOTIVATION 

¢  It is hard to understand and reason about end-
to-end behavior of networks: 
�  Can host A talk to host B?   
�  What are all the packet headers from A that can reach 

B?   
�  Are there any loops or black holes in the network? 
�  Is Slice X isolated totally from Slice Y? 
�  What will happen if I remove an entry from a router?  
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MOTIVATION 

¢ There are two reason for this complexity: 

�  Networks are getting larger. 
�  Network functionality becoming more 

complex. 
¢  Firewalls, ACLs and deep packet inspection MBs. 
¢  VLAN and inter-VLAN routing. 
¢  Encapsulation (MPLS, GRE). 
¢  ToS-based routing. 
¢  nondeterministic routing. 
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LOOKING AT THE OTHER FIELDS 

Communication Systems: 
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HEADER SPACE ANALYSIS 

 A simple abstraction to model all kinds of 
forwarding functionalities regardless of specific 
protocols and implementations. 
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HEADER SPACE FRAMEWORK 
 
SIMPLE OBSERVATION: A PACKET IS A POINT IN THE 
SPACE OF POSSIBLE HEADERS AND A BOX IS A 
TRANSFORMER ON THAT SPACE. 
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HEADER SPACE FRAMEWORK 

¢ Step 1 - Model packet header as a point in {0,1}L 
space – The Header Space 
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HEADER SPACE FRAMEWORK 

¢  Step 2 – Model all networking boxes as transformer of 
header space 
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Transfer Function: 
  T : (hin, pin) −→ {(h1, p1), (h2, p2), . . . , (hn, pn)}



HEADER SPACE FRAMEWORK 

¢ Example: Transfer Function of an IPv4 Router 

�  172.24.74.0     255.255.255.0   Port1 
�  172.24.128.0   255.255.255.0   Port2 
�  171.67.0.0       255.255.0.0       Port3 
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(h,1)   if dst_ip(h) = 172.24.74.x 

(h,2)   if dst_ip(h) = 172.24.128.x 

(h,3)   if dst_ip(h) = 171.67.x.x 

T(h, p) = 
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(dec_ttl(h),1)   if dst_ip(h) = 172.24.74.x 

(dec_ttl(h),2)   if dst_ip(h) = 172.24.128.x 
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HEADER SPACE FRAMEWORK 
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(rw_mac(dec_ttl(h),next_mac) , 1)   if dst_ip(h) = 172.24.74.x 

(rw_mac(dec_ttl(h),next_mac) , 2)   if dst_ip(h) = 172.24.128.x 

(rw_mac(dec_ttl(h),next_mac) , 3)   if dst_ip(h) = 171.67.x.x 

T(h, p) = 
 



EXAMPLE RULES: 

¢ FWD & RW: rewrite bits 0-2 with value 101 
�  (h & 000111…) | 101000… 

¢ Encapsulation: encap packet in a 1010 header. 
�  (h >> 4) | 1010…. 

¢ Decapsulation: decap 1010xxx… packets 
�  (h << 4) | 000…xxxx 

¢ Load Balancing: 
�  LB(h,p) = {(h,P1),…(h,Pn)} 12 



HEADER SPACE FRAMEWORK 

¢ Properties of transfer functions 
  

�  Composable: 

�  Invertible:    
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T1(h, p) 

R1 R2 R3 

T2(h, p) 
T3(h, p) 

T3(T2(T1(h, p)))

Domain (input) Range (output) 

TT−1

T2(T1(h, p))

T3(T2(T1(h, p)))



HEADER SPACE FRAMEWORK 

¢ Step 3 - Develop an algebra to work on these 
spaces. 

¢ Every object in Header Space, can be described 
by union of Wildcard Expressions. 

¢ We want to perform the following set operations 
on wildcard expressions: 
�  Intersection 
�  Complementation 
�  Difference 
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HEADER SPACE FRAMEWORK 

¢ Finding Intersection: 
�  Bit by bit intersect using intersection table: 

¢  Example:  
¢  If result has any ‘z’, then intersection is empty: 
¢  Example: 

¢ See the paper for how to find complement and 
difference. 
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USE CASES OF HEADER SPACE 
FRAMEWORK 
 
THESE ARE ONLY SOME EXAMPLE USE CASES THAT 
WE DEVELOPED SO FAR… 
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USE CASES 

¢ Can host A talk to B? 
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USE CASES 

¢  Is there a loop in the network? 
�  Inject an all-x text packet from every switch-port 
�  Follow the packet until it comes back to injection port 
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USE CASES 

¢  Is the loop infinite? 
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Finite Loop Infinite Loop ? 



USE CASES 

¢ Are two slices isolated? 

¢ What do we mean by slice? 
�  Fixed Slices: VLAN slices 
�  Programmable Slices: slices created by FlowVisor 

¢ Why do we care about isolation? 
�  Banks: for added security. 
�  Healthcare: to comply with HIPAA. 
�  GENI: to isolate different experiments running on the 

same network. 
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USE CASES 

¢ Are two slices isolated? 
�  1) slice definitions don’t intersect. 
�  2) packets do not leak. 
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HEADER SPACE FRAMEWORK 

¢ A Powerful General Foundation that 
gives us 
�  A common model for all packets 

Ø  Header Space. 

�  A unified view of almost all type of boxes. 
Ø  Transfer Function. 

�  A powerful interface for answering different 
questions about the network. 
Ø  T(h,p) and T-1(h,p)  
Ø  Set operations on Header Space 
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IMPLEMENTATION AND 
EVALUATION 
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IMPLEMENTATION 

¢ Header Space Library (Hassel) 
¢  Written in Python and C. 
¢  Implements Header Space Class 

¢  Set operations 
¢  Implements Transfer Function Class 

¢  T and T-1 

¢  Implements Reachability, Loop Detection and Slice Isolation 
checks. 
¢  < 50 lines of code 

¢  Includes a Cisco IOS parser, Juniper Junos Parser and 
OpenFlow table dump parser. 
¢  Generates transfer function from CLI output. 
¢  Keeps the mapping from Transfer function rule to line 

number in the CLI output. 
¢  Publicly available: git clone https://bitbucket.org/peymank/hassel-public.git 
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STANFORD BACKBONE NETWORK 
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~750K IP fwd rule. 
~1.5K ACL rules. 

~100 Vlans. 
Vlan forwarding. 



STANFORD BACKBONE NETWORK 

¢ Loop detection test – run time < 10 minutes on a 
single laptop. 
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PERFORMANCE 
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Python C 

Generating TF Rules ~150 sec - 

Loop Detection Test (30 ports) ~560 sec ~5 sec 

Average Per Port ~18 sec ~40ms 

Min Per Port ~8 sec ~2ms 

Max Per Port ~135 sec ~1sec 

Reachability Test (Avg) ~13 sec ~40ms 

Performance result for Stanford Backbone Network on a 
single machine: 4 core, 4GB RAM. 



NEXT STEPS 

¢ Automatic Test Packet Generation (To appear in 

CoNEXT 2012). 
�  Uses HSA model to Generate minimum number of test 

packets to maximally cover all the “rules” in the 
network. (Data Plane Testing) 

�  One error detected, find the location of error in data 
plane. 

¢ NetPlumber: Real Time Network Policy Checker. 
�  A tool to run HSA-style checks in real time by 

incrementally updating results as network changes. 
�  Achieve on average, sub-ms run time per update for 

checking more than 2500 pairwise reachability checks 
on Google WAN. 
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SUMMARY 

¢ Introduced Header Space Analysis As 
�  A common model for all packets (Header Space). 

�  A unified view of almost all type of boxes. (Transfer 
Function.) 

�  A powerful interface for answering different 
questions about the network. (T, T-1, Header Space Set 
Algebra) 

¢  Showed that direct implementation of HSA 
algorithms scales well to enterprise-size networks. 
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Thank You! 
 

Questions? 
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COMPLEXITY 
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¢  Run time  
Reachability: O(dR2)  

Loop Detection: O(dPR2)  
�  R: maximum number of rules per box.  
�  d: diameter of network. 
�  P: number of ports to be tested 

Slice Isolation Test: O(NW2) 
�  W: number of wildcard expressions in definition of a slice. 
�  N: number of slices in the network. 

See paper for more details. 



COMPLEXITY OF REACHABILITY AND LOOP 
DETECTION TESTS 
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¢  Run time  
Reachability: O(dR2)  

Loop Detection: O(dPR2)  
�  R: maximum number of rules per box.  
�  d: diameter of network. 
�  P: number of ports to be tested 
Assumption: Linear Fragmentation 
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