
 1

NETCONF <get2> Operation

draft-bierman-netconf-get2-02
IETF 85, November 2012

Andy Bierman
November 7, 2012

 2

Problem Statement

● NETCONF retrieval operations are not
efficient enough to scale to large datastore
sizes

● New mechanisms are needed to improve
client and server efficiency

 3

P1:Wrong Datatype Returned

● The <get> operation returns all data, including
all the config=true nodes that are returned by
<get-config>.

– A mechanism is needed to retrieve just
operational data that does not duplicate the
configuration datastore contents

 4

P2:No last-modified Filtering

● A NETCONF application which periodically
polls datastore contents must retrieve all the
relevant content and compare it to a stored
version.

– A time-stamp and time-filter mechanism is
needed so the client can specify that data
should only be returned if it has been
modified since a specified date and time.
The client must be able to retrieve the last-
modified time for nodes which support it.

 5

P3:No Instance Discovery

● The client needs to provide explicit subtree
filters for all the list entries it wishes to
discover. There is no simple mechanism to
retrieve just instance naming information.

– A simple mechanism is needed to retrieve only
the key values that identify a particular list
instance

– The client needs be able to discover nested list
instances, which subtree filters cannot
support

 6

P4: No Subtree depth control

● A client can select which subtrees to retrieve
but cannot efficiently control the depth of
descendant nodes to return. E.g., a client
cannot discover if a P-container exists by
retrieving just the container node.

– A mechanism is needed to control the number
of nested layers within a subtree that should
be returned

 7

P5:Filter not extensible

● The NETCONF <filter> parameter is defined in
a way that does not allow YANG augment-
stmt to extend the filter types. Proper YANG
statements are not used to define the filter.

– A mechanism is needed that will allow new
content filter mechanisms to be defined
which do not require existing mechanisms to
be republished.

 8

P6:No data source metadata

● There are no standard mechanisms for a
client to determine the data source of
operational data. E.g., the current time of day
may be derived from NTP or a CLI operation

– A mechanism is needed to allow a client to
discover the data source for a particular
operational data node

 9

Solution Proposal

● Add a new operation <get2> to augment or
eventually replace the <get> and <get-config>
operations

– keep existing functionality

– add new functionality

 10

Time Filters

● time-filter: retrieval nodes only if changed
since the specified date-and-time

– server MUST maintain a time-stamp for the
entire running datastore

– server MAY maintain a time-stamp for
particular data nodes

– client can discover which nodes have
timestamps

 11

 Depth Filters

● depth-filter: request specific number of nest
levels, starting from the 'selection' node

– depth=1 returns just the requested node

– depth=2 returns the requested node and its
child nodes

 12

Operational Datastore

● New source datastore called 'operational'
defined for <get2>, which contains:

– all config=false nodes

– any ancestor nodes of config=false nodes

– any list keys for ancestor-or-self axis
config=false nodes

 13

Data Sources

● YANG identity to identify data source and 5
initial data sources:

– server

– running

– operation

– ntp

– dns

● Data model specific data sources will be
defined as needed

 14

<get2> Parameters

● source: datastore to retrieve from
● filter-spec: content filter
● keys-only: discover instances
● if-modified-since: time filter
● depth: depth filter
● with-defaults: defaults retrieval
● with-timestamps: last change time retrieval
● with-data-sources: data source retrieval

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

