

NADA: A Unified Congestion Control Scheme for Real-Time Media

Xiaoqing Zhu and Rong Pan Advanced Architecture & Research Cisco Systems

August 2012

Agenda

- Design goals
- System model
- Network node operations
- Sender/Receiver behavior
- Evaluation results
- Open issues

Design Goal #1: Limit Self-Inflicted Delay

Design Goal #3: Weighted Bandwidth Sharing

System Overview

Network Node Behavior

- Queuing discipline: FIFO
- Congestion notification via:

Delay: no special operation at the queue ECN: queue-based random marking PCN: token-bucket-based random marking

Queue-based ECN Marking

Token-bucket-based PCN Marking

Sender Structure

Target Rate Calculation

• Reacting to ECN/PCN marking:

$$R_{o} = R_{min} + \eta \frac{w(R_{max} - R_{min})}{p}$$
scaling parameter
$$marking ratio$$

Sending Rate Calculation

- Accommodate lag in encoder reaction
- Trade-off between between network queuing and rate shaping delay

Slow-Start Rate

 $R_{ss}(t) = R_{min} + \frac{t - t_o}{T} (R_{max} - R_{min})$ time horizon

Receiver Behavior

• Observe instantaneous end-to-end per packet statistics:

Queuing delay: $d_n = t_{r,n} - t_{s,n} - \min_{n' \le n} (t_{r,n'} - t_{s,n'})$ ECN/PCN marking: $p_n \in \{0, 1\}$

Obtain time-smoothed estimations:

$$d_{avg} = \alpha d_n + (1 - \alpha) d_{avg}$$
$$p_{avg} = \alpha p_n + (1 - \alpha) p_{avg}$$

• Periodic RTCP reports (e.g., at 3% of received packets)

Test Scenario

Flow ID	R_i^{min}	R_i^{max}	w_i
1	1	2	1
2	1	2	1
3	2	6	1
4	2	6	2
5	3	5	2
6	3	5	2
7	2	4	3
8	2	4	3
9	3	6	3
10	3	6	3

- Bottleneck bandwidth: 30Mbps
- Random delay measurement error for stream 6, at time t=30s

Delay-Based Adaptation: Per-flow Rate

Delay-Based Adaptation: Total Rate

Delay-Based Adaptation: Bottleneck Queue

Delay-Based Adaptation: Packet Loss Ratio

Delay vs. ECN: Per-Flow Rate

Delay vs. ECN: Bottleneck Queue

ECN vs. PCN: Per-Flow Rate

ECN vs. PCN: Total Rate

ECN vs. PCN: Bottleneck Queue

Conclusions and Next Steps

- Key benefits of NADA:

 Fast rate adaptation
 Weighted bandwidth sharing
 Can work with a range of congestion signals
 In case of PCN: zero standing queue and smoother streaming rates
- Next steps:

Future evaluations in linux-based implementations Graceful transition between different congestion signals Compete robustly against loss-based schemes