Research Problems
in SDN

Kireeti Kompella
Contrail Systems
IETF 85 — SDNRG




SDN: a Fundamental Step Forward?

(or just a new whip to beat vendors with?)

What really attracts me to SDN:
1. The idea that a network is more than the sum of its parts
l.e., take a network-wide view rather than a box-centric view

2. Theidea that creating network services can be a science
rather than a set of hacks-on-hacks-on-hacks
Especially hacks that vary by box, by vendor and by OS version

3. The idea that there should be a discipline and methodology
to service correctness

Rather than testing (and more testing), declaring victory, only to
fail in the real world because of some unanticipated interaction

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(gV}
i
o
(@
o+
<
oo
=
>
o
o
O




Criteria for Success

SDN is a real step

1.
2.

IF SDN gives us an abstraction of the network

IF, through this abstraction, we have a means of reasoning
about the network and network services

IF SDN offers a means of verifying correct operation of the
network or of a service

IF SDN offers a means of predicting service interaction

Finally, IF SDN offers a means of setting (conceptual) asserts
by which we can get early warning that something is wrong

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(gV}
i
o
(@
o+
<
[eTs}
=
>
o
o
O




First Question: Models of SDN

* There are several (quite different) models of SDN
In fact, I'll offer a new one

* There has been no attempt (to my knowledge) to classify or
categorize SDN (I don’t mean areas of deployment)

* This presentation proposes one, but perhaps that should be
the first question that SDNRG tackles:

What are the distinct models of SDN?

(@
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(@
i
o
(@
o+
<
oo
=
>
o
o
O




Models of SDN

SDN can be considered in terms of three distinct models

1.

A Networking Operating System that oversees the network
data plane and hosts a number of “control programs” that
define networking services

A Broker through which applications interact with and affect
the network so that the apps are more effective, are more
efficient and/or offer better user experience

A Compiler that translates a high-level language in which an
operator defines what they want from the network and
compiles it into low-level instructions for the data plane

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%]
©
—
o+
=
o
(®)
(gV}
i
o
(V)
o+
<
oo
=
>
o
o
O




1. SDN as a Network OS

Control Control Control
program program program

5 November 2012

(%]
S
[}
+—
(%]
>
(%}
©
—
)
c
o
(®)
(@
i
o
(@
)
L=
oo
=
>
o
o
O

Data Plane Data Plane Data Plane Data Plane

—
U
—




1. SDN as a Network OS

* The NOS offers a set of services (just as a “normal” OS offers
scheduling, memory management, device abstraction, etc.)

* These services constitute a new “POSIX”, and are accessible
through a set of APIs or libraries ...

* ... with which user can write an (imperative) control program
to transform the current network state to a desired state

For example, the desired state might be a set of traffic
engineered paths that reflect new bandwidth requirements

Or the desired state may be a new location for a Virtual Machine,
with associated network state

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(gV}
i
o
(V)
o+
<
[eTs}
=
>
o
o
O




1. SDN as a Network OS

* Fundamental abstraction
Network state = annotated graph of underlying data plane

Reasoning about the network and services
Control programs are transformations of network state

5 November 2012

Correct operation of the network and services
Analyze network transformations as program correctness

Anticipating service interaction
Need to develop a “calculus” of network transformations

Creating asserts in the network

Need to create the equivalent of loop invariants at critical
junctures of a transformation

(%]
S
(]
+—
[
>
(%}
©
—
+—
=
o
(®)
(gV}
i
o
(@
+—
<
Q0
=
>
Qo
o
O




2.SDN as a Broker

Broker

N
i
©)
N
P -
(]
0
<
(]
>
o
=
LN
%)
<
[}
L
7
>
(Vp]
©
b
L
=
(@]
©)
(@]
i
o
N
-
L=
oo
=
>
o
(@]
o

Protocols

Network




2.SDN as a Broker

* This style of SDN offers the abstraction of, well, a broker
a translator (to go from protocols to APIs and vice versa),
a “condenser”, which summarizes network properties, and

a security/policy gateway (which app is allowed to learn what and
change what, and who gets priority)

* This style of SDN lets apps learn about the network ...
* ... then talk to the network to optimize app performance

(@
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(@
i
o
(@
o+
<
oo
=
>
o
o
O




2.SDN as a Broker

* This model is a very pragmatic approach to a very real
problem in networking: how can applications and networks
stop pretending that the other doesn’t exist? :-)

E.g., Netflix works hard to overcome network congestion by
clever programming and clever video encoding ...

... but the picture can still pixelate or go into “Buffering” or SD
* This is a hard problem that’s been tackled before ...

... with limited success

Perhaps this time the outcome will be better

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(gV}
i
o
(V)
o+
<
oo
=
>
o
o
O

* However, it’s hard (*) to see this as a fundamental step
forward, notwithstanding the value of the outcome

(*) for me; but I'll keep an open mind




3. SDN as a Compiler

-

Parse

Declarative specification
of network requirements

Parsing and initial
processing of specification

5 November 2012

Compile,
translate to
back end

Data Data Data Data
Plane Plane Plane Plane

(%]
S
[}
+—
(%]
>
(%}
©
—
)
c
o
(®)
(@
i
o
(@
)
L=
oo
=
>
o
o
O

 \
=
=

—




3. SDN as a Compiler

* This style of SDN offers the abstraction of a high-level,
declarative programming language

* The network administrator’s job is to specify how she wants
the network to look, who can talk to whom and how, etc.

* The SDN compiler then has to translate the high-level
declarations, requirements and constraints to low-level
instructions that each data plane element can implement

The “hacks that vary by box, by vendor and by OS version” is the
compiler’s problem, not the network administrator’s!

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(gV}
i
o
(@
o+
<
oo
=
>
o
o
O




3. SDN as a Compiler

* Fundamental abstraction: high-level specifications

* Reasoning about the network and services: a calculus of these
specifications
The current state and/or the desired state of the network is
irrelevant, as are the transformations one makes to get there

5 November 2012

Correctness of the network and/or services:
Requires matching specifications to requirements

Depends on how intuitive/natural the specification language is

Anticipating service interaction
Requires understanding how specifications dovetail

(%]
S
(]
+—
[
>
(%}
©
—
+—
=
o
(®)
(gV}
i
o
(V)
+—
<
Q0
=
>
Qo
o
O

Asserts
Need to relate specifications to network state




Comments

Should this all appear far too theoretical and idealistic, I'll
confess to being a huge fan of Dijkstra (and Gries)

The Art (and Science) of Programming may never have offered
a convincing proof of a large, real-world program

But the idea of programming as a discipline has had a profound
influence on those who want to write good programs

Could you put a conditional breakpoint in a loop without thinking
(perhaps intuitively) about a loop invariant?

A worthy goal of SDN is to create a discipline of networking

(@}
i
o
(@]
—
()
Q0
S
(Y
>
o
=z
LN
(%)
S
[}
o+
[
>
(%}
©
—
o+
=
o
(®)
(gV}
i
o
(V)
o+
<
oo
=
>
o
o
O

But why am | apologizing for aiming high? ©




