Local Management of Trust Anchors for the RPKI (document status update)

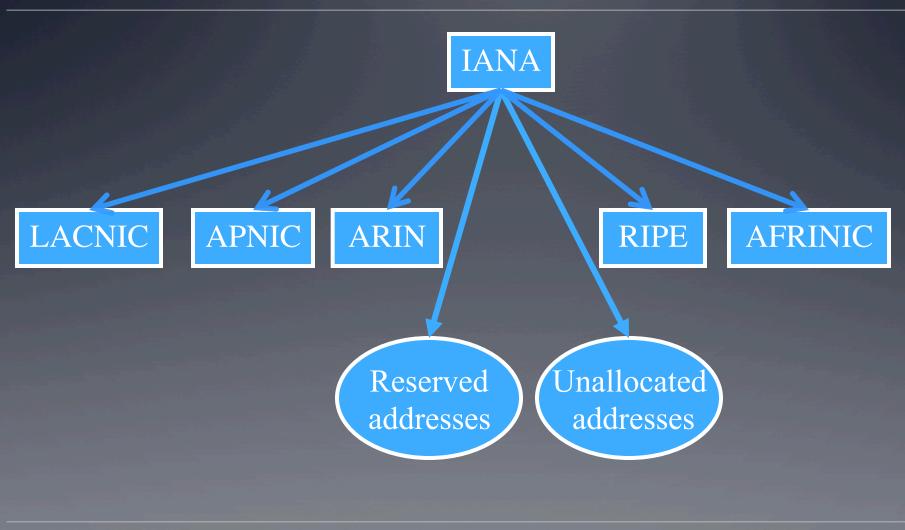
draft-ietf-sidr-ltamgmt-07

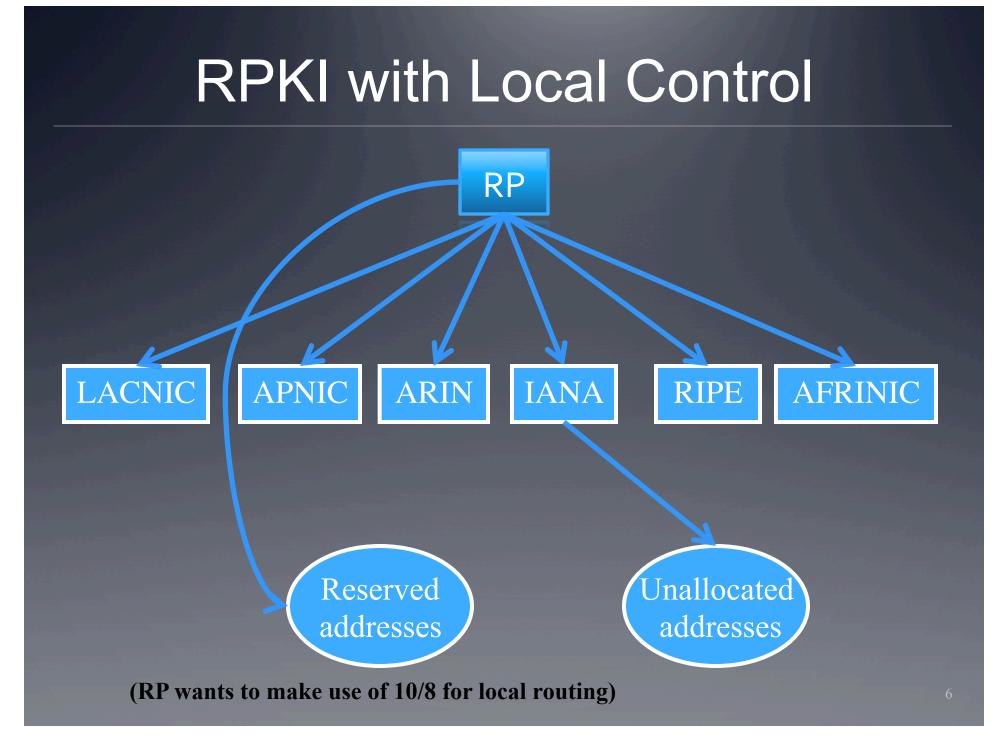
Andrew Chi (channeling Stephen Kent)

BBN Technologies

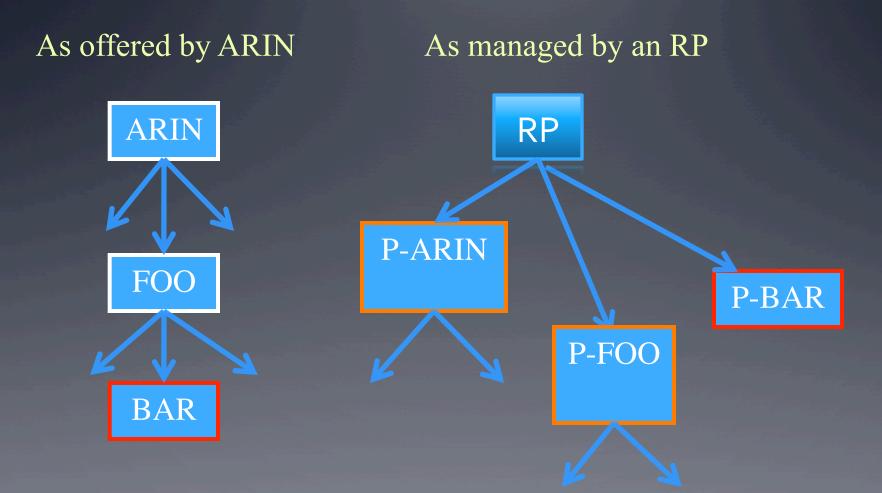
Local TA Management

- We've briefed versions of this I-D in previous meetings (since March, 2010!)
- The -07 version of the document was posted on 10/11
- We made a number of edits to the -05 version
 - Improved readability
 - The global flags defined in the "tags" section now can be asserted on a per-target basis in the "blocks" section
 - Addressed a comment from Rob Austein from July IETF (this was the change from -06 to -07)


LTA Model: The RP is the TA!


- The model we propose calls for each RP to recognize exactly one TA: itself
- The RP imports the putative TAs (typically in the form of self-signed certificates) and re-homes them under itself
- It also allows import of "targeted" certificates (referenced by SKIs) also rehomed under the local TA, using a "constraints" file
- The RP can thus override the RPKI nominal hierarchy, represented in the repository system, as needed

Making this Work in the RPKI


- An RP must be able to create new certificates, often with modified RFC 3779 extensions
- To make this work
 - The self-signed RP certificate must contain RFC 3779 extensions encompassing <u>all</u> addresses and <u>all</u> ASNs
 - The RP re-issues certificates with new 3779 extensions to override the RPKI tree
 - Delete overlapping 3779 data as needed
 - Re-homing targeted certificates under the RP TA
 - Re-homing ancestors of rehomed certificates under the RP TA
 - The RP can also override certain fields of the re-issued certificate using the constraints file

An RPKI TA Example

A More Detailed Example

(RP trusts its own knowledge of BAR's address allocation and does not want any action by ARIN or FOO to override that knowledge)

Elements of the Solution

- Constraints file
 - Proofreading algorithm
- Resource re-writing algorithm
 - Target processing
 - Ancestor processing
 - Tree processing
 - TA re-homing
- Path discovery
- Revocation
- Expiration

Constraints File

- The RP creates (or imports) a constraints file specifying IP address and AS# resources for target certificates
 - Certificates are specified by SKI
- The constraints file also allows the RP to control rewriting certain fields in the re-issued certificates
 - Validity dates
 - CRLDP
 - AIA
 - Policy Qualifier OID

Resource Rewriting Algorithm

- The process begins with an optional proofreading algorithm to verify and clean up the constraints file
- The four stages to the algorithm have not changed
 - Target processing
 - Ancestor processing
 - Tree processing
 - TA re-homing
- One change under considerations is to take some global flags from the constraints file and allow them to be applied to individual certificates (e.g., to change validity intervals)

Processing Order Dependencies?

- What happens if a certificate is processed by more than one stage of the algorithm?
 - Can the resulting "paracertificate" be dependent on the order of the entries in the constraints file?
- An iterative sorting algorithm is applied to the constraint file entries to remove such dependencies
- There is an upper bound on the iteration count to ensure that the algorithm converges
- So long as the maximum path length is less than or equal to this upper bound, no order dependency can occur

Implications & Resolutions

- This algorithm creates two hierarchies: the original certificate hierarchy and the paracertificate hierarchy
 - The path discovery algorithm <u>prefers</u> the paracertificate hierarchy
 - The original hierarchy and the para-hierarchy are disjoint; revocation of a certificate in one does not affect the other
 - Paracertificates are all issued by the RP, so only the RP can revoke them, while riginal certificates are revoked by their issuers
- Expiration dates can be changed by the constraints file, overriding original certificate expiration dates

One Change of Note

- The the syntax for the constraints file is still informative, not normative, but we would like to change that in the future
- We now refer to it as RECOMMENDED
- Normative syntax would enable constraints files generated by different sources to be accepted by <u>all</u> RP software
- The algorithm description will remain still nominal, i.e., any algorithm that yields the same results is OK

A Side Note

- Mark Reynolds, the principle author of this document, and the software engineer, is making available an open-source version of the LTA software for a more general environment
- Island Peak Software has released an LTA plug-in for Firefox as free, open-source software
- I believe that this version focuses on the more general PKI context, with less emphasis on 3779 extensions (which tend to be RPKI-specific)
- Contact Mark (<u>mcr@islandpeaksoftware.com</u>) for more info

Review, Comment -> WGLC

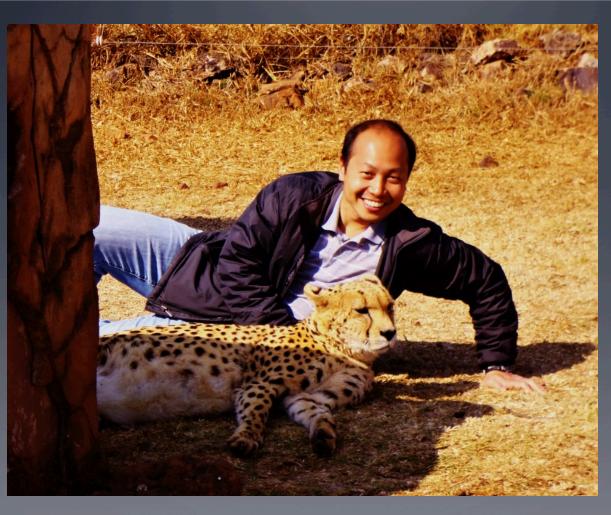


Photo Credit: Amy Jodell Strop