Extension to DTLS
Securing Multicast Group Communication

DTLS-based Multicast Security for Low-Power and Lossy Networks (LLNs)
draft-keoh-tls-multicast-security

Sye Loong Keoh, Oscar Garcia-Morchon, Sandeep S. Kumar, Esko Dijk
IETF85 Nov 4 – 9, 2012, Atlanta
Email: sye.loong.keoh AT philips.com
Group Communication Use Cases

Source: Group Communication for CoAP (draft-ietf-core-groupcomm)
Motivation & Requirements

• **Group communication (in LLNs):** also vulnerable to eavesdropping, tampering, message forgery, replay, etc.
• **Limited resource and memory:** reduce the number of cryptographic protocols, reuse security protocol.
• **DTLS is must-implement for CoAP:** IPSec is optional, extend DTLS to secure multicast group communication.

Requirements

• **A Group Security Association (GSA):** *distribute keying materials.*
• Multicast security policy: *specify the ciphersuite for encryption and authentication.*
• Multicast key management: *update/renew group keys periodically.*
• Group level data integrity and authentication
• Data source authentication (out-of-scope)
• Data confidentiality (optional)
• Replay protection
Overview of DTLS Multicast Security

Controller/Router

Keying Material: Traffic Generation Key (TGK)
Multicast Identifier: Multicast IP Address
Security Policy: Ciphersuite
Security Params: RAND, Crypto Session (CS)

Establishing GSAs using DTLS Handshake Protocol

Incremented when group keys are renewed

Derive multicast group keys
Traffic Encryption Key (TEK)
Traffic Auth Key (TAK)

Content Type Version Epoch Sequence Number Length DTLS Ciphertext MAC

Computed using TAK

Incremented for each message

Encrypted with TEK (optional)

Group Key Generation and multicast message protection using DTLS Record Layer
Group Keys Generation

- Each device generates Multicast Traffic Encryption Key (TEK) and Traffic Authentication Key (TAK).
- Based on the PRF and P-Function defined in MIKEY [RFC3830]. Use SHA-256 instead of SHA-1.

\[
\text{INKEY : TGK} \\
\text{Inkey_len : bit length of TGK (128-bit)} \\
\text{Label : constant || mul_id || cs_id || RAND} \\
\text{Outkey_len : bit length of output key (128-bit)}
\]

- The constant value for TEK: 0x2AD01C64
 For TAK, the constant value is: 0x1B5C7973
Protecting Multicast Messages (1)

- Application message (e.g., CoAP message) is encrypted using TEK, and a MAC is generated using the TAK according to the ciphersuite defined.
- Sequence Number is incremented whenever the sender sends a multicast message.
- All listeners keep track of the sequence number/epoch received to ensure message freshness.

Ciphersuite MTS_WITH_AES_128_CCM_8
- AES CCM mode of operation is an authenticated encryption scheme. Only the TEK is used to encrypt and compute MAC.

Ciphersuite MTS_WITH_NULL_SHA256
- Message is NOT encrypted, hence TEK is not used.
- Message MAC must be computed using the TAK using SHA256.

Define additional ciphersuites that use both TEK and TAK in the future.
Protecting Multicast Messages (2)

• When receiving a multicast message, devices use the multicast IP address to locate the crypto session in order to obtain the TEK and TAK.

• Use the last received epoch and sequence number to detect message replay.
 – Drop messages that have a sequence number less than or equal to the value stored in the crypto session.
 – Epoch number must match the epoch number stored in the crypto session.

This replay detection mechanism only works on one-to-many communication topology.
Group Key Renewal

- Group keys can be renewed periodically according to a schedule.
- Rely on the DTLS secure channel with each member device to convey new security parameters.
- The ‘master key’ – i.e., TGK remains the same.

Send new security parameters via the DTLS secure channel.
Conclusions

• Group communication is of key importance in machine-to-machine (M2M) applications.

• Propose an extension to DTLS to support secure multicast group communication, need to further specify the DTLS header extension.

• Re-use existing security protocol on constrained devices in LLNs.

• Current proposal only applies to One-to-Many communication topology.