

IT Systems Engineering | Universität Potsdam

A Simple Secure Address generation Scheme for IPv6 Autoconfiguration (SSAS)

http://tools.ietf.org/html/draft-rafiee-6man-ssas

IETF86 6man WG

Orlando, FL

March 2013

Hosnieh Rafiee, Christoph Meinel Hasso Plattner Institute, Germany

Motivation – purpose of this draft

response to discussions in mailing list

2

- Privacy and Security issues IID generation algorithms
 - Cryptographically Generated Addresses (CGA) RFC 3972
 - Large computational costs
 - Verification : Need to re-generate CGA along with signature verification

Verification occurs:

- During Duplicate Address Detection
- When verifying the other nodes in the cache (reachability checking) section 3 RFC 4861
- Privacy Extension RFC 4941
 - ND threats RFC 3756 (Lack of security) when CGA isn't used

ND widely used in different applications such as

- Mobile networks for Care of Address generation- RFC 6543, 6275
- Sensor networks, 6LoWPAN RFC 6775
- Vehicular networks

Comparison of A Simple Secure Address generation Scheme (SSAS) to CGA

- Much faster and easier to use than the CGA algorithm (generated in less than 250 milliseconds along with public key generation)
 - Good for nodes with limited resources
 - □ Mobile IPv6 uses CGA RFC 4866

3

- This cost efficient algorithm can be used in place of CGA

- 2. Good to use when nodes need to observe privacy
 - Integrates privacy and security when administrators want to observe both
 - The main purpose of CGA is not for providing privacy but for providing security

Comparison of A Simple Secure Address generation Scheme (SSAS) to CGA

4

- 3. Can mitigate DoS types of attack against verifier nodes
 - Verification time is much less than that of CGA
 - The node can verify more packets per second than when using CGA
 - For cache reachability checking the node needs to verify several packets that come from other nodes, per second
 - Just need to verify the signature to protect the node against ND attacks.
- 4. Provides another approach for the generation of the IID

Brief description of SSAS algorithm

⁵ Considering Privacy and Security

Brief description of SSAS algorithm

⁶ Considering Privacy without Security

Using RPKI or DNS as a key management approach for Router Authorization

- Using RFC 6491, 6494 for Resource public key Infrastructure
 - A possible scenario Using DNS

7

Clients need to use the DNSKEY RR (RFC 4034) in order to authorize routers

8 Clarification of the use of RPKI

Useful document? Adoption to WG?