The U and G bits in IPv6 Interface Identifiers

draft-carpenter-6man-ug-01

Brian Carpenter Sheng Jiang

> *IETF 86 March 2013*

Background

- RFC 4291 assumes that the normal case is to transform a MAC address into an IID, preserving the IEEE u and g bits (inverting u).
 - For unicast, u could be 0 or 1, g should be 0 (but the algorithm does not check)
- Numerous other forms of IID invented, e.g.:
 - temporary addresses (RFC 4941)
 - . CGAs and HBAs
 - . stable privacy addresses
 - · 4rd mapped addresses

Inconsistencies (1)

- In CGAs and HBAs, u = g = 0.
- In temporary addresses, u = 0 but g is variable.
 stable-privacy-addresses proposes the same.
- 4rd proposes u = g = 1.
- Reserved Subnet Anycast Addresses have u = 0, g = 1.
- Under /127 prefixes, u and g are both variable.
- The idea that these bits have semantics derived from IEEE MAC addresses is clearly bogus.

Inconsistencies (2)

- In any case, there is evidence from the field that even in IEEE MAC addresses, duplicate addresses are widespread, so the u bit is untrustworthy.
- We can conclude that the state of the u and g bits conveys no meaning in an IID; they are "just bits".
- Note: ILNP does have the constraint that its Node Identifiers must be unique within a given site, but as we have just shown, the state of the u bit does not in any way guarantee this.

The problem

Whenever a new IID format is proposed, there is confusion caused by

 a) the implication in RFC 4291 that all IIDs are
 in Modified EUI-64 format
 b) the statement in RFC 4291 that

The use of the universal/local bit in the Modified EUI-64 format identifier is to allow development of future technology that can take advantage of interface identifiers with universal scope.

• a) is false and b) is based on a false premise.

Residual usefulness of u and g bits

- If an IID is known or guessed to have been created according to RFC 4291, it could be transformed back into a MAC address. This can be helpful during fault diagnosis.
- If each method of IID creation specifies the values of u and g, and each new method is carefully designed, these bits reduce the chances of duplicate IIDs. (But DAD remains essential.)

Proposed updates to RFC 4291 (1)

- The EUI-64 to IID transformation defined in RFC 4291 MUST be used for all cases where an IID is derived from an IEEE address.
- Specifications of other forms of IID will either specify explicitly how the u and g bits are set, or will simply include them as part of a field within the IID.
- The u and g bits in an IID have no semantics. The whole IID should be viewed as opaque by third parties.

Proposed updates to RFC 4291(2)

 In the following statement, the reference to "Modified EUI-64" applies only to IIDs actually derived from an IEEE address:

For all unicast addresses, except those that start with the binary value 000, Interface IDs are required to be 64 bits long and to be constructed in Modified EUI-64 format.

 This statement is deleted: The use of the universal/local bit in the Modified EUI-64 format identifier is to allow development of future technology that can take advantage of interface identifiers with universal scope.

Questions? Discussion?

• Does 6man want to adopt this draft?