Benchmarking Neighbor Discovery Problems

Bill Cerveny March 12, 2013

History

Suggested by Ron Bonica at IETF 85 BMWG meeting

Neighbor Discovery (ND) Problem Background

- The problem is described and documented in RFC 6583, "Operational Neighbor Discovery Problems."
- An IPv4 subnet is "typically" no larger than
 510 addresses and scanning is relatively quick.
- Since the default size of any IPv6 user subnet is 2**64, there can be a lot of addresses
- Scanning the IPv6 subnet takes a really long time, but one can still start scanning it.

ND Problem con't

- The number of addresses one can scan for is limited only by the available bandwidth.
- The DUT (router) needs to perform ND for the addresses being scanned, even if the addresses aren't "live" in the subnet
- This can create a lot of state in the DUT, so much so that the DUT may be unable to complete ND for real, valid nodes in subnet.

Benchmarking ND Problem

- Build a network which illustrates ND problem for DUT.
- Instrument network to measure DUT behavior under a scan which causes DUT to be overwhelmed by ND triggering events.

Basic Test Network and Methodology

More comprehensive Test Network

Metrics / Measurements in "00" document

- 1. Round trip time across DUT (easy)
- 2. Rate DUT add valid node to neighbor cache (medium)
- 3. Adherence to NDP activity prioritization described in RFC 6583 (medium)
- 4. DUT CPU Utilization (easy to measure, accuracy suspect)
- Rate DUT forwards packets(easy)
- Rate DUT responds to neighbor solicitations in presence of scanning activity (medium)
- 7. Impact on unaffected interfaces/subnets
- Maximum number of entries in DUT

Proposed metrics/measurements

- Frequency of ND triggering events sufficient for DUT to be impaired (easy) – key to test
- Round trip time across DUT (easy)
- 3. Rate DUT adds valid node to neighbor cache (medium)
- 4. Adherence to NDP activity prioritization described in RFC 6583 (medium) Relevant but perhaps compliance, not benchmarking
- 5. Rate DUT forwards packets(easy) *Is this significant in ND test?*
- 6. Rate DUT responds to neighbor solicitations in presence of scanning activity (medium)
- 7. Impact on unaffected interfaces/subnets
- 8. ND latency as determined by monitoring target network (medium)

Questions

- Should this document benchmark the neighbor discovery "problems" only or neighbor discovery in general?
- Should "unusual" behavior be benchmarked?
 - i.e. node in target network responding to all ND solicitations