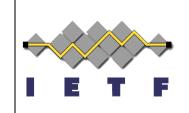
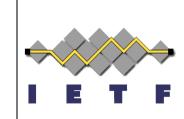

IS-IS/OSPFv3 extensions for destination +<something> routing

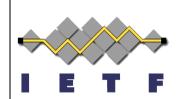
Fred Baker

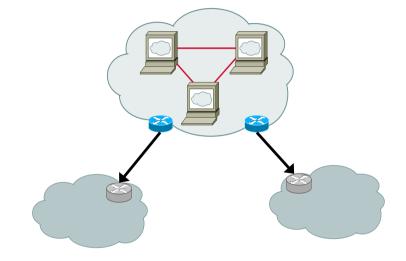



Homenet Requirements

- Homenet is trying to develop supporting technologies for a very simple, but technologically advanced, home
 - Primarily focused on IPv6
 - Zero Configuration if at all possible
 - Interface to Smart Grid technologies including Zigbee/802.15.4
 - Multi-subnet with routing an option
 - Potentially multihomed to multiple ISPs
 - Edge Routing to resolve BCP 38 issues

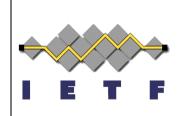
Additional issues


- I have a security problem I want to solve in data centers
 - That's not Homenet's problem, but I would like a corresponding solution, and
 - I'd like to have the debate needed once, not twice
- I think this can be solved in IS-IS or OSPFv3,
 - I have customers likely to want it in either protocol
 - In either protocol, I have AS-external issues, interarea issues, and intra-area issues. That implies looking at routing information in all of those areas

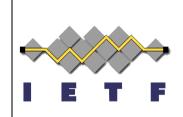

Multi-Topology Routing

- OSPF and IS-IS Topologies are defined by metrics on links between router interfaces within the routing domain
 - The link does or does not have a metric within the topology
 - Automatically routes around discrepancies between physical and logical topology
- Inter-area and intra-area source/destination routing cases could be implemented as multitopology
 - draft-xu-homenet-twod-ip-routing is multi-topology

Edge Routing as Multi-Topology Routing



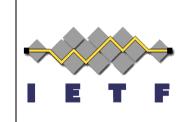
- Edge routing is routing to a default route that is outside the routing domain
 - The IS-IS/OSPF topologies for each PA prefix are identical
 - There is no link
 advertised in IS-IS or
 OSPF that might have
 the indicated metric


 Edge routing is a reachability problem, not a topology problem

IS-IS Context

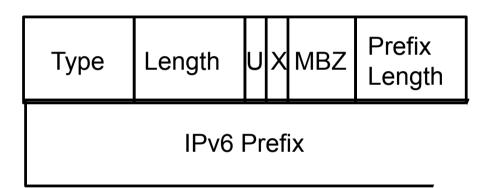
- RFC 5308 defines a Reachability TLV for reachable IPv6 Prefixes
 - It also defines a format for sub-TLVs, which it says may be of value in the future
 - Sub-TLVs add information to a routing decision

draft-baker-ipv6-isisautomatic-prefix

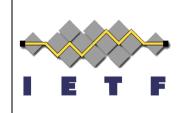


Problem:

- Homenet, for zeroconf, needs prefix distribution
- OK, if I propose IS-IS, I need to solve that


Concept:

- A specific system, maybe the CPE router that has received a DHCP-PD prefix allocation, announces the prefix into a network
- Routers (including pseudonodes) allocate a /64 at random from the prefix
- If there is a collision, conflicting routers back off a random interval and guess again
- If the TLV is withdrawn, they forget the derived IPv6 prefix



Autoconfiguration TLV

- Fields:
 - Type: IANA
 - Length of TLV
 - U/X as normal
 - No need for sub-TLV flag
 - Prefix Length
 - Prefix, same format as in Reachability TLV

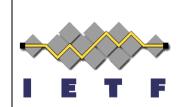
Flow label and Source Prefix sub-TLVs

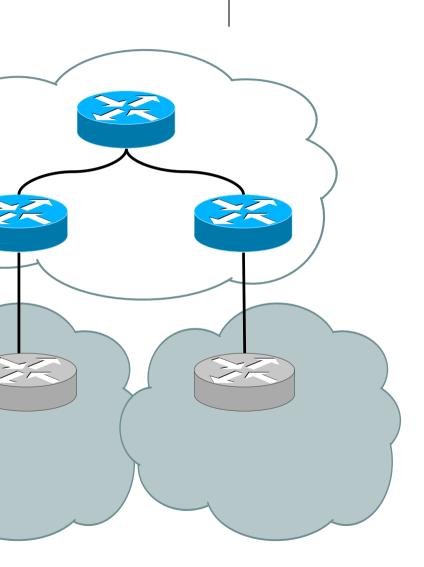
- Drafts I'm describing:
 - draft-baker-ipv6-isis-dst-flowlabel-routing
 - draft-baker-ipv6-isis-dst-src-routing
 - draft-baker-ipv6-ospf-dst-flowlabel-routing
 - draft-baker-ipv6-ospf-dst-src-routing

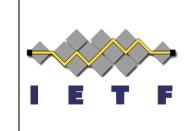
Premise:

- Reachability TLV, with sub-TLV(s), identifies a set of possible messages to send down a route
- Additional qualifying information while calculating a route, and in the FIB
- Need comments on route calculation and FIB design

Route Calculation

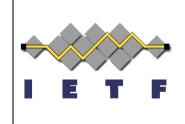

Normal OSPF or IS-IS route calculation:


 Identifies a sequence of routers and links from calculating router to router advertising reachability

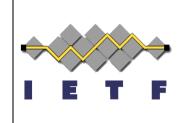

"Router" might be an IS-IS pseudonode or OSPF Network LSA

 TLV, in this case, identifies a destination and a qualification

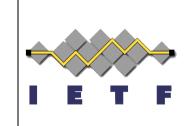
 Traffic with a different source address or flow label follows a different route, or no route



FIB Design


- Not subject to standardization.
- Some suggestions in an appendix
 - Linux (Waikato extensions) has separate FIBs by source prefix.
 - One could insert destination into appropriate FIB, or all FIBs if source not specified
 - PATRICIA tree
 - Allows a discontiguous bit string, differing don't-care sets
 - Recursive descent following most useful bits
 - Final answer compared to entire specification

"So Fred, what's your problem with OSPF?"



- OSPF (RFCs 2328 and 5340) defines fixed format LSAs for each purpose
 - As opposed to extensible TLVs as RFC 5308 does
 - It also defines separate LSAs for AS-external, intra-area, and inter-area prefixes
 - AS-external-LSA may have additional information beyond the prefix
 - That makes it hard to extend
- To extend OSPF, I need an LSA I can extend

draft-baker-ipv6-ospfextensible

- I defined three extensible LSAs, replacements for intra-area-prefix-LSA, interarea-prefix-LSA, and AS-external-LSA
- I have since been told of Abhay Roy's extensible LSA draft in draft-ietf-ospf-mtospfv3 (2007)
- I'll use whatever extensible technology the OSPF WG approves

Backward compatibility

- OSPF WG asked about making this work in networks with RFC 5340 format LSAs as well
- Really not a problem:
 - Definition of source prefix sub-TLV:
 - A zero-length LSA (::/0) can be represented with a sub-TLV whose length is zero or no sub-TLV
 - Definition of flow label sub-TLV:
 - "any" flow label is specified by leaving the sub-TLV out
- RFC 5340 LSA by definition leaves those sub-TLVs out. Semantically equivalent.