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Introduction
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Spoiler.
Effects of bufferbloat mitigation - RRUL test
..

.

Latency during four TCP streams in each direction.
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The research behind this

▶ Experiments done as part of university project.
▶ Three computers networked in lab setup.
▶ Switch the active qdisc and compare results.
▶ Goal: Real-world measurements on shipped Linux kernel.

.
Test setup
..

.

Test client Test server

100 mbit ethernet 10 mbit ethernet
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Recent changes in the Linux kernel
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Byte Queue Limits (BQL)

▶ Introduced in Linux 3.3, by Tom Herbert of Google.
▶ Sits between traffic control subsystem and device

drivers.
▶ Requires driver support (ongoing effort).

▶ Keeps track of number of bytes queued in the driver.
▶ Addresses variability of packet sizes (64 bytes up to 4KiB

w/TSO).
▶ Unneeded in the presence of software rate limiting.
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TCP Small Queues (TSQ)

▶ Introduced in Linux 3.6 by Eric Dumazet.
▶ Enhancement to the TCP stack (i.e. above the traffic

control layer).
▶ Makes the TCP stack aware of when packets leave the

system.
▶ Sets a configurable limit (default 128KiB) of bytes in

transit in lower layers.
▶ After this limit, keeps the packets at the TCP layer.

▶ This allows for more timely feedback to the TCP stack.
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New queueing disciplines

▶ Straight CoDel implementation in the codel qdisc.

▶ Enhancements to the Stochastic Fairness Queueing (sfq)
qdisc.

▶ Optional head drop, more hash buckets, no permutation.

▶ Combination of CoDel and DRR fairness queueing in the
fq_codel qdisc.

▶ Prioritises thin flows.
▶ This is currently the best bufferbloat mitigation qdisc in

mainline Linux.
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Testing methodology and best practices
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Testing methodology

▶ Basically: Load up the bottleneck link, measure latency.

▶ Useful tools: netperf, iperf, ping, fping.
▶ Use mtr to locate bottleneck hop.

▶ Or use netperf-wrapper to automate tests!
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The netperf-wrapper testing tool

▶ Python wrapper to benchmarking tools (mostly
netperf).

▶ Runs concurrent tool instances, aggregates the results.
▶ Output and intermediate storage is JSON.

▶ Exports to CSV.
▶ Graphing through python matplotlib.
▶ Tests specified through configuration files (in Python).

▶ Common tests included (such as RRUL).
▶ Developed and tested on Linux.

▶ One or two issues on FreeBSD (WiP).
▶ Install: pip install netperf-wrapper. Netperf 2.6+.
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The RRUL test
▶ Runs four concurrent TCP streams in each direction.

▶ Each stream with different diffserv marking.
▶ Simultaneously measures UDP and ICMP ping times.
▶ Supports IPv4 and IPv6.

▶ Variants that measure v4 vs v6 and RTT fairness.

▶ The four streams pretty reliably loads any link to
capacity.

▶ This is a simple and effective way of finding bufferbloat.
▶ netperf-wrapper -H <test server> rrul

▶ Works well as a backdrop for testing other stuff.
▶ The Chrome benchmark works well for websites.
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Best configuration practices
▶ Disable offloads (esp. TSO/GSO).

▶ Modern CPUs can handle up to gigabit speeds without it.
▶ No offloads means better interleaving⇒ lower latency.

▶ Lower BQL limit.
▶ BQL defaults developed and tuned at 1Gbit/s+.
▶ 1514 (ethernet MTU + header) works well up to

≃10Mbit/s.
▶ 3028 up to≃100Mbit/s.
▶ But further work is needed in this area.

▶ Make sure driver(s) are BQL-enabled.
▶ BQL is Ethernet only, and not all drivers are updated.
▶ Esp. many SOCs have drivers without BQL.
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Best configuration practices (cont.)
▶ If using netem to introduce latency, use a separate

middlebox.
▶ In particular, netem does not work in combination with

other qdiscs.

▶ Change qdiscs at the right place - at the bottleneck!
▶ Or use software rate limiting (e.g. htb) to move the

bottleneck.

▶ Beware of buffers at lower layers.
▶ Non-Ethernet drivers (DSL etc).
▶ Buffering in error correction layers (e.g. 802.11n, 3g,

LTE).
▶ Even htb buffers an extra packet.
▶ (fq)CoDel doesn’t know about buffers at lower levels.

▶ Beware the cheap switches
▶ Pause frames and/or excess buffering.
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Test results
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.
Two TCP streams + ping - pfifo_fast
..

.
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.
Two TCP streams + ping - codel
..

.

codel
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.
Two TCP streams + ping - sfq
..

.

sfq
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.
Two TCP streams + ping - fq_codel
..

.

fq_codel
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.
Two TCP streams + ping - comparison
..

.
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.
Two TCP streams + ping - CDF
..

.
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.
RRUL test - pfifo_fast
..

.
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.
RRUL test - codel..
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.
RRUL test - sfq
..
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.
RRUL test - fq_codel
..

.
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.
RRUL test - comparison
..

.
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.
RRUL test - CDF..

.
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.
CDF UDP flood..

.

UDP flood
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Best_practices_for_benchmarking_Codel_and_FQ_Codel
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Questions?

Questions? Comments?
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