
The State of the Art in Bufferbloat
Testing and Reduction on Linux

Toke Høiland-Jørgensen
Roskilde University

IETF 86, 12th March 2013

1 / 31



Outline

Introduction

Recent changes in the Linux kernel

Testing methodology and best practices

Test results

2 / 31



Introduction

3 / 31



Spoiler.
Effects of bufferbloat mitigation - RRUL test
..

.

Latency during four TCP streams in each direction.

101 102 103

ms

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

Ping (ms) - fq_codel qdisc

Ping (ms) - sfq qdisc

Ping (ms) - codel qdisc

Ping (ms) - pfifo_fast qdisc

You are here

You could
be here

Note the log scale.

4 / 31



The research behind this

▶ Experiments done as part of university project.
▶ Three computers networked in lab setup.
▶ Switch the active qdisc and compare results.
▶ Goal: Real-world measurements on shipped Linux kernel.

.
Test setup
..

.

Test client Test server

100 mbit ethernet 10 mbit ethernet

5 / 31



Recent changes in the Linux kernel

6 / 31



Byte Queue Limits (BQL)

▶ Introduced in Linux 3.3, by Tom Herbert of Google.
▶ Sits between traffic control subsystem and device

drivers.
▶ Requires driver support (ongoing effort).

▶ Keeps track of number of bytes queued in the driver.
▶ Addresses variability of packet sizes (64 bytes up to 4KiB

w/TSO).
▶ Unneeded in the presence of software rate limiting.

7 / 31



TCP Small Queues (TSQ)

▶ Introduced in Linux 3.6 by Eric Dumazet.
▶ Enhancement to the TCP stack (i.e. above the traffic

control layer).
▶ Makes the TCP stack aware of when packets leave the

system.
▶ Sets a configurable limit (default 128KiB) of bytes in

transit in lower layers.
▶ After this limit, keeps the packets at the TCP layer.

▶ This allows for more timely feedback to the TCP stack.

8 / 31



New queueing disciplines

▶ Straight CoDel implementation in the codel qdisc.

▶ Enhancements to the Stochastic Fairness Queueing (sfq)
qdisc.

▶ Optional head drop, more hash buckets, no permutation.

▶ Combination of CoDel and DRR fairness queueing in the
fq_codel qdisc.

▶ Prioritises thin flows.
▶ This is currently the best bufferbloat mitigation qdisc in

mainline Linux.

9 / 31



Testing methodology and best practices

10 / 31



Testing methodology

▶ Basically: Load up the bottleneck link, measure latency.

▶ Useful tools: netperf, iperf, ping, fping.
▶ Use mtr to locate bottleneck hop.

▶ Or use netperf-wrapper to automate tests!

11 / 31



The netperf-wrapper testing tool

▶ Python wrapper to benchmarking tools (mostly
netperf).

▶ Runs concurrent tool instances, aggregates the results.
▶ Output and intermediate storage is JSON.

▶ Exports to CSV.
▶ Graphing through python matplotlib.
▶ Tests specified through configuration files (in Python).

▶ Common tests included (such as RRUL).
▶ Developed and tested on Linux.

▶ One or two issues on FreeBSD (WiP).
▶ Install: pip install netperf-wrapper. Netperf 2.6+.

12 / 31



The RRUL test
▶ Runs four concurrent TCP streams in each direction.

▶ Each stream with different diffserv marking.
▶ Simultaneously measures UDP and ICMP ping times.
▶ Supports IPv4 and IPv6.

▶ Variants that measure v4 vs v6 and RTT fairness.

▶ The four streams pretty reliably loads any link to
capacity.

▶ This is a simple and effective way of finding bufferbloat.
▶ netperf-wrapper -H <test server> rrul

▶ Works well as a backdrop for testing other stuff.
▶ The Chrome benchmark works well for websites.

13 / 31



Best configuration practices
▶ Disable offloads (esp. TSO/GSO).

▶ Modern CPUs can handle up to gigabit speeds without it.
▶ No offloads means better interleaving⇒ lower latency.

▶ Lower BQL limit.
▶ BQL defaults developed and tuned at 1Gbit/s+.
▶ 1514 (ethernet MTU + header) works well up to

≃10Mbit/s.
▶ 3028 up to≃100Mbit/s.
▶ But further work is needed in this area.

▶ Make sure driver(s) are BQL-enabled.
▶ BQL is Ethernet only, and not all drivers are updated.
▶ Esp. many SOCs have drivers without BQL.

14 / 31



Best configuration practices (cont.)
▶ If using netem to introduce latency, use a separate

middlebox.
▶ In particular, netem does not work in combination with

other qdiscs.

▶ Change qdiscs at the right place - at the bottleneck!
▶ Or use software rate limiting (e.g. htb) to move the

bottleneck.

▶ Beware of buffers at lower layers.
▶ Non-Ethernet drivers (DSL etc).
▶ Buffering in error correction layers (e.g. 802.11n, 3g,

LTE).
▶ Even htb buffers an extra packet.
▶ (fq)CoDel doesn’t know about buffers at lower levels.

▶ Beware the cheap switches
▶ Pause frames and/or excess buffering.

15 / 31



Test results

16 / 31



.
Two TCP streams + ping - pfifo_fast
..

.

pfifo_fast
0 10 20 30 40 50 60 70

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Time

Download bandwidth Upload bandwidth Ping (ms)

17 / 31



.
Two TCP streams + ping - codel
..

.

codel
0 10 20 30 40 50 60 70

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Time

Download bandwidth Upload bandwidth Ping (ms)

18 / 31



.
Two TCP streams + ping - sfq
..

.

sfq
0 10 20 30 40 50 60 70

Time

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Download bandwidth Upload bandwidth Ping (ms)

19 / 31



.
Two TCP streams + ping - fq_codel
..

.

fq_codel
0 10 20 30 40 50 60 70

Time

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Download bandwidth Upload bandwidth Ping (ms)

20 / 31



.
Two TCP streams + ping - comparison
..

.

pfifo_fast
0 10 20 30 40 50 60 70

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Time  
codel

0 10 20 30 40 50 60 70

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Time

sfq
0 10 20 30 40 50 60 70

Time

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

 
fq_codel

0 10 20 30 40 50 60 70
Time

100

101

102

M
b
it
s/
s

100

101

102

103

m
s

Download bandwidth Upload bandwidth Ping (ms)

21 / 31



.
Two TCP streams + ping - CDF
..

.

two streams
0 10 20 30 40 50 60 70

ms

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 p

ro
b
a
b

ili
ty

Ping (ms) - fq_codel qdisc Ping (ms) - sfq qdisc Ping (ms) - codel qdisc
22 / 31



.
RRUL test - pfifo_fast
..

.

pfifo_fast

1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
b

it
s/

s 
d

o
w

n

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
b

it
s/

s 
u
p

0 10 20 30 40 50 60 70
100

101

102

m
s

Time

23 / 31



.
RRUL test - codel..

.

codel

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

M
b

it
s/

s 
d

o
w

n

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
b

it
s/

s 
u
p

0 10 20 30 40 50 60 70
100

101

102

m
s

Time

24 / 31



.
RRUL test - sfq
..

.

sfq

1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
b

it
s/

s 
d

o
w

n

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
b

it
s/

s 
u

p

0 10 20 30 40 50 60 70
Time

100

101

102

m
s

25 / 31



.
RRUL test - fq_codel
..

.

fq_codel

1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
b

it
s/

s 
d

o
w

n

1.8
2.0
2.2
2.4
2.6
2.8

M
b

it
s/

s 
u

p

0 10 20 30 40 50 60 70
Time

100

101

102

m
s

26 / 31



.
RRUL test - comparison
..

.

pfifo_fast

1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
b

it
s/

s 
d

o
w

n

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
b

it
s/

s 
u
p

0 10 20 30 40 50 60 70
100

101

102

m
s

Time  
codel

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

M
b

it
s/

s 
d

o
w

n

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
b

it
s/

s 
u
p

0 10 20 30 40 50 60 70
100

101

102

m
s

Time

sfq

1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
b

it
s/

s 
d

o
w

n

1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0

M
b

it
s/

s 
u

p

0 10 20 30 40 50 60 70
Time

100

101

102

m
s

 
fq_codel

1.4
1.6
1.8
2.0
2.2
2.4
2.6

M
b

it
s/

s 
d

o
w

n

1.8
2.0
2.2
2.4
2.6
2.8

M
b

it
s/

s 
u

p

0 10 20 30 40 50 60 70
Time

100

101

102

m
s

27 / 31



.
RRUL test - CDF..

.

0 10 20 30 40 50 60 70 80
ms

0.0

0.2

0.4

0.6

0.8

1.0
C

u
m

u
la

ti
v
e
 p

ro
b
a
b

ili
ty

RRUL
Ping (ms) - fq_codel qdisc Ping (ms) - sfq qdisc Ping (ms) - codel qdisc

28 / 31



.
CDF UDP flood..

.

UDP flood
101 102 103 104

ms

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 p

ro
b
a
b

ili
ty

Ping (ms) - fq_codel qdisc Ping (ms) - sfq qdisc Ping (ms) - codel qdisc

29 / 31



References

▶ BQL: https://lwn.net/Articles/454390/

▶ netperf: http://www.netperf.org/netperf/

▶ netperf-wrapper: https://github.com/tohojo/netperf-wrapper

▶ Paper on experiments:
http://akira.ruc.dk/~tohojo/bufferbloat/bufferbloat-paper.pdf

▶ RRUL test spec draft:
https://github.com/dtaht/deBloat/blob/master/spec/rrule.doc

▶ Best practices: https://www.bufferbloat.net/projects/codel/wiki/
Best_practices_for_benchmarking_Codel_and_FQ_Codel

▶ My email address: toke@toke.dk

30 / 31

https://lwn.net/Articles/454390/
http://www.netperf.org/netperf/
https://github.com/tohojo/netperf-wrapper
http://akira.ruc.dk/~tohojo/bufferbloat/bufferbloat-paper.pdf
https://github.com/dtaht/deBloat/blob/master/spec/rrule.doc
https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benchmarking_Codel_and_FQ_Codel
https://www.bufferbloat.net/projects/codel/wiki/Best_practices_for_benchmarking_Codel_and_FQ_Codel


Questions?

Questions? Comments?

31 / 31


	Introduction
	Recent changes in the Linux kernel
	Testing methodology and best practices
	Test results

