Analysis of Port Control Protocol in Mobile Network

draft-chen-pcp-mobile-deployment-02 IETF 86- Orlando, Mar 2013

Gang Chen, Zhen Cao Mohamed Boucadair Vizdal Ales Laurent Thiebaut China Mobile France Telecom Deutsche Telekom Alcatel-Lucent

Status

- The work had been presented at IETF#83, 84, 85 during PCP session
- We are encouraged to improve the draft and presented here to solicit feedback from wider audiences

Motivation

- It's highly desirable to adopt PCP in Mobile networks
 - Keepalive Message Optimization
 - Energy Saving on terminals
 - Restoring Internet Reachability
 - Balance Resource Assignment
- Why is the document needed?
 - Encourage devices with low battery resources to embed a PCP client
 - Promote PCP in mobile operator's networks
 - Harmonize considerations towards PCP designers/ implementers

Covered Topics

- Deployment architecture
- PCP Server Discovery
- MN and multi-homing
- Refresh Consideration
- Unsolicited Messages Delivery
- SIPTO Architecture
- Authentication Consideration

P1: PCP Server Discovery

- Issues: DHCPv4 is not available in 3GPP network on a wide scale. I-D.ietf-pcp-dhcp can't be applied in the case
- Recommendations:
 - Using default router (require integration of NAT with GW)
 - Using PTR resolving (require operational planning, may not scale effectively)
 - Extending Protocol Configuration Options (PCO) in 3GPP spec (require additional 3GPP efforts)

P2: multi-homing

- Issues: PCP basically presumes to be applied in a single-homed model. However, multiple PDP contexts are allowed on a MN, on which multi-homed situation is retained
- Recommendations: MN has to be able to manage multiple PCP server cases

P3: Refresh

- Issues
 - Default MRD would result MN always staying active (prevent MN from moving to idle)
 - It would get worse when multiple PCP clients located on MN
- Recommendations
 - The configuration of MRD is matched with timers assigned by a radio link
 - A time-line observer mechanism may be helpful to control different PCP client behaviors resending requests within an optimal transmission window, e.g. adjusting IRT to synchronize different requests

P4: Unsolicited Messages Delivery

- Issues
 - Radio link is normally incapable of multicast
 - A unicast delivery may generate floods of messages e.g. multiple thousands of MN that were served by a PCP server would be implicitly paged.
 - Care should be taken when unsolicited messages are required
 - the mapping changed due to renumbering
 - the PCP server (or NAT) lost its state

P5: SIPTO Architecture

- Issues: traffic would be offloaded at a particular points; the host could not determine which egress path packets would take
- Workaround
 - Potential solution has been documented in I-D.rpcwpcp-pmipv6-serv-discovery
 - More considerations should be taken into account in 3GPP network, in which radio layer ID, instead of 5tuples, to identify the local offload context. Mapping functions between ID& 5-tuples are needed

P6: Authentication

- Issues: provisioning of new credentials to mobile devices is a difficult task
- Workaround
 - In-band solution: using EAP-SIM/EAP-AKA/ EAP-AKA' authentication is feasible way in 3GPP
 - Out-band solution: 3GPP GAA (Generic Authentication Architecture)

Comments/Questions?