A registry for IPPM metrics

draft-bagnulo-ippm-new-registry-00
draft-bagnulo-ippm-new-registry-independent-00
M. Bagnulo, T. Burbridge S. Crawford, P. Eardley,
A. Morton

Motivation

- Allow a Controller to request a Measurement
 Agent to perform a specific test
- Allow a *Measurement Agent* to report the results of a specific test to a *Collector*.
- Protocol Independent registry: Allows multiple protocols to be defined between Controller, Measurement Agents and Collector
 - e.g. IPFIX between the MA and the Collector and YANG/NETCONF between the Controller and MA
 - This may requires additional protocol specific fields

Well-defined and operational metrics

- RFC4148 defined an IPPM metric registry
- RFC6248 obsoleted RFC4148
 - it was "found to be insufficiently detailed to uniquely identify IPPM metrics... [there was too much] variability possible when characterizing a metric exactly"
- New registry: tightly defined metric with few open parameters (don't affect the nature of the test)
 - e.g. source and dest address and the like
- Less is more: reduced number of metrics proven useful
 - We require both specification AND expert review for new assignments
 - Specification covers the well defined and expert review the operational
- Side benefits:
 - Inventory of useful and used metrics
 - Comparable test results even if performed by different implementations and in different networks

Information to be conveyed

 "Dear measurement agent: Please start test RTT(server.com,150) every day at 2000 GMT. Run RTT test every 1 second for 50 times. Do that when the network is idle. Generate both raw results and 99th percentile mean. Send measurement results to collector.com in IPFIX format".

Registries

- The commnly used metric registry
 - Scheduling registry
 - Environment registry
 - Output-type registry
 - Metric registry

Scheduling Registry

- Defines the scheduling strategy for the metric
 - Initial allocations
 - Singleton (additional input time of execution)
 - Periodic (additional parameters, initial time, end time and rate)
 - Poisson (additional parameters, initial time, end time and rate)

Environment Registry

- Defines the conditions where the metric is to be executed.
 - Initial allocations
 - Undefined: no additional environment settings are provided
 - No-cross traffic: The "No cross traffic" condition is satisfied when, during the 5 seconds preceding measurement of the metric:
 - the level of traffic flowing through the interface that will be used to send measurement packets in either direction is less than a threshold value of 1% of the line rate of the aforementioned interface.

Output-type Registry

- Defines the type of output the metric produces, either raw or some statistics.
 - Initial allocations
 - Raw: the raw output of the test
 - Xth percentile interval
 - Xth percentile mean

Metric Registry

- Two approaches:
 - Independent registries, the metric being one more
 - The metric registry entries are simply metric IDs
 - A test is defined with as the tuple (metric, scheduling, Outputtype, Environment)
 - Possible explosion (implementation side) due to combinations
 - Sub-registries of the metric registry.
 - Each entry of the metric registry fully defines a test
 - The metric registry has the following entries:
 - Metric ID
 - Scheduling (value out of the Scheduling sub-registry)
 - Output-Type (value out of the Output-Type sub registry)
 - Environment (value out of the Environment sub registry)
 - Combinations are defined explicitly, possible explosion of entries

Metric registry

- Initial Allocations (inspired in MBA report):
 - UDP latency
 - UDP packet loss
 - ICMP packet loss
 - DNS latency
 - VOIP latency
 - VOIP loss
 - VOIP Jitter