
Model Based Metrics
draft-mathis-ippm-model-based-metrics-01.txt

Matt Mathis
mattmathis@google.com

Al Morton
acmorton@att.com

IETF 86 IPPM
Pie Day-2013

Bulk Transport Capacity is hard for a reason

● TCP and all transports are complicated control systems
○ TCP causes self inflicted congestion
○ Governed by equilibrium behavior
○ Changes in one parameter are offset by others

● Every component affects performance
○ All sections of the path
○ End systems & middle boxes (TCP quality)
○ Routing anomalies and path length

● The Meta-Heisenberg problem
○ TCP "stiffness" depends on RTT
○ The effects of "shared congestion" depend on

■ Bottlenecks and RTT of the other cross traffic
○ Can't generally measure cross traffic with 1 stream

Model Based Metrics: A better way to do BTC

● Open Loop TCP congestion control
○ Prevent self inflicted congestion
○ Prevent circular dependencies between parameters

■ Data rate, loss rate, RTT

● Independently control traffic patterns
○ Defeat congestion control (generally slow down)
○ Mimic all typical TCP traffic (bursts, etc)

● Measure path properties section by section
○ Mostly losses
○ Compare to properties required per models
○ E2E path passes only if all sections pass all tests

An example

● Goal: 1 MByte/s BTC over a path that is
○ 10 Mb/s raw capacity (~1.2 MByte/s)
○ 20 ms, 1500 Byte MTU, 64 byte headers
○ Invert TCP performance model [MSMO97]

○ Yields loss probability budget less than 0.3%
○ Test each short section at 1 MByte/s

● Fails if total loss probability is more than 0.3%
○ This is a pass/fail test, not a measurement
○ But passing this test alone is not sufficient

■ Because the link can still fail in other ways

The pieces (simplified)

Host 1 Host 2

Sub-path under test

End-to-end path determines
target_RTT and target_MTU

The "application" determines
target_rate

Rest of path is assumed
to be effectively ideal Must meet constraints determined

by models based on target_rate,
target_RTT and target_MTU

A common context for all examples

● Target parameters:
○ 1 MByte/s bulk data over a path that is
○ 10 Mb/s raw capacity (~1.2 MByte/s)

■ More than the target!
○ 20 ms, 1500 Byte MTU, 64 byte headers

● Compute from TCP Macroscopic Model
○ target_pipe_size

■ target_rate*target_RTT / (target_MTU-header_overhead)
■ 14 packets

○ reference_target_run_length (= 1/p)
■ (3/2)(target_pipe_size^2)
■ 274 packets
■ Same as p < 0.365%

A common context for all examples

● Target parameters:
○ 1 MByte/s bulk data over a path that is
○ 10 Mb/s raw capacity (~1.2 MByte/s)

■ More than the target!
○ 20 ms, 1500 Byte MTU, 64 byte headers

● Compute two additional (new) parameters:
○ Headway at target rate

■ target_headway = target_MTU*8/target_rate
■ target_headway = 1.5 mS

○ Headway at bottleneck rate
■ bottlenenck_headway = target_MTU*8/effective_rate
■ bottlenenck_headway = 1.2 mS

Derating

● To some extent the models are subjective
○ ...and too conservative
○ What if TCP isn't standard Reno?

● Must permit some flexibility in the details
○ As TCP evolves
○ As the network evolves
○ The ID permits "derating"

● Actual test parameters must be documented
○ and justified relative to the targets
○ and proven to be sufficient

■ Meet the target goal over a derated network
● (ID will have) text about calibration and testing

 Deciding if a test passes

● Recursive run length measurement
○ Progressive testing
○ Accumulate counts of losses and delivered packets
○ When to:

■ Declare success
■ Declare failure
■ Give up (declare inconclusive)

● Inconclusive also covers other non-results such as:
○ Tester failed to generate prescribed traffic patterns
○ Link was determined to be non-idle
○ etc

● Beware: inclusive tests can introduce sampling bias
○ Must strive to eliminate them

Sequential Probability Ratio Test (SPRT) **

Help Determining Sample Size & Pass/Fail/Indeterminate:
● In practice, can we compare the empirically estimated

loss probabilities with the targets as the sample size
grows?

● How large a sample is needed to say that the
measurements of packet transfer/loss indicate a
particular run-length is present (with desired error)?

● Lost packet or other impairment ~ Defect
We set two probabilities, one using target_run_length (H0)
and another target_run_length/2 (H1), and the Type I and II
errors (0.05).
The SPRT test calculates cumulative limits to evaluate the
defect ratio as the sample size grows.
** suggested by Ganga Maguluri, AT&T Labs

 The MBM tests

● Baseline CBR performance
● Slowstart style burst tests
● Server interface rate burst tests
● Reordering tests
● Standing queue test

 All tests have valuable properties

● Tests do not depend on sub-path RTT
○ (Except one detail)

● Tests do not depend on measurement vantage
○ As long as rest of path is good enough

● Tests should not depend on implementation
○ Different parties should get the same results

● There is an algebra on test result
○ Summing (or pre allocating) losses
○ Any failed test on any sub-path fails the path

Keep these in mind

1) Baseline (CBR) performance test

● Measures basic data and loss rates
● Send one 1500 byte packet every 1.5 mS

○ 1 MByte/s target rate
○ Losses MUST be more than 274 packets apart

■ Otherwise "standard" Reno TCP can't fill the link

● Derated or Intermittent testing
○ e.g. reduced data rate for stealth mode testing
○ No derating on target_run_length

■ (Use a different model instead)

Example Intermittent Testing

2) Slowstart style burst test

● Mimic last RTT of a conventional TCP slowstart
○ Measure queue properties at the "constrained link"

● Send 4 packets every 2*bottleneck_headway (2.4 mS)
○ Builds a queue at bottleneck
○ Burst of 2*target_pipe_size (28 packets)

■ Peak queue will be target_pipe_size (14 packets)
■ (Test inconclusive if ACK are too early ->no queue)

○ Repeated bursts on 2*target_RTT headway
■ Below 14 packets, MUST meet target_run_lenght
■ Beyond 14 packets MAY derate
■ Beyond 28 packets (more?) loss rate SHOULD rise

● To prevent excess queueing (bufferbloat)
● THEORY or MODELS NEEDED

3a) Interface rate bursts, caused by the server

● Full rate (e.g. 10 Gb/s) bursts from a server/tester
○ Note that these mostly stress the "front path"

■ Server up to the primary bottleneck
○ Typically not the same queue as the SS tests

■ Smaller bursts
■ Higher rate

● Caused by various server and application effects
○ 3 Packets: normal window increases, all states
○ 10 Packets: IW10
○ 44 Packets: TSO (if cwnd is large enough)
○ Application or scheduler stalls

■ Any fraction of 2*target_pipe_size possible
■ Statistics scale: (target_rate) * (sched_quanta)

3b) Interface rate bursts caused elsewhere

● TCP sender reflects ACK bursts into the data
● Caused by:

○ ACK compression due to other traffic
○ Thinning/merging ACKs (network or receiver)
○ Compression due to channel allocation

■ E.g. Half duplex
○ Reordering etc of cumulative ACKs

● Clearly if the network caused the problem
○ TCP isn't likely to fix it
○ Even if it was a different network section

What IF rate burst tolerance should be ok?

● General pattern:
○ No runlength derating for small burst sizes
○ Progressively more RL derating at larger burst sizes
○ It is a tradeoff between TCP and the network

■ Small bursts must be tolerated by the network
■ Network must tolerate network induced bursts
■ TCP should not cause large bursts

● NEED A MODEL
● Quick answer

○ We have been underestimating the impact of TSO

4) Tolerance to reordering

● OPEN QUESTION My speculation
● Strict sequential switching costs Internet scale

○ Forced sequential processing
○ Less concurrency within chassis
○ No ECMP routing, even at the fabric level
○ Extra interlocks, controls or hashes
○ Mostly motivated by non-TCP applications
○ But TCP has it's limitations too

● How would it change net if reordering was common?
○ What is the opportunity cost of the current state?

● Seeking compelling stories about reordering tolearnce

5) Standing queue test

● Run approximately fixed window transport
○ Start slightly below test_RTT*bottleneck_Rate

● Increment window once per 2*target_RTT
○ Mimic congestion avoidance at the target RTT

● Collect statistics on the onset of loss
○ Count from MAX(Rate/RTT) to first loss

● Must not be before target_run_length (in average)
○ Otherwise TCP will not fill the link

● Must not happen at too large of queue
○ Direct measure of bufferbloat
○ How big is too big?
○ NO MODEL or THEORY

5) Standing queue test

From "Windowed Ping" - INET 94

Conclusion

● Must defeat:
○ Throughput maximizing
○ Congestion control
○ Equilibrium behavior
○ Heisenberg effects

● The trick:
○ open-loop congestion control
○ application determines data rate and bursts

● Compute pass/fail/inconclusive outcome
○ application accurating controlling the traffic
○ Loss statistics consistent with required pattern

Adopt as a WG work item?

● Also seeking contributors
○ Can give shared write to anybody with @gmail login

