
Painless
Class 1 Devices Programming

draft-hahm-lwig-painless-constrained-programming-00

Subject of the matter

• Sharing experience implementing:

– RFC 4944 (6lowpan)

– RFC 6282 (header compression)

– TCP

– UDP

• On constrained devices (class 1)

Programming Constrained Devices

• Class 0 devices

– RAM << 10k and ROM << 100k

– Use of specialized OS (Contiki, TinyOS)

• Event-loop + cooperative multi-threading

• Class 1 devices

– RAM ≈ 10k and ROM ≈ 100k

– Alternatives to event-loop paradigm

• We used RIOT for our implementations

Pains of Coding on Class 0 Devices

• Learning curve

– Event-loop programming paradigm is different

– Coders must learn that and cope with lack of
RAM/ROM

Easier Coding on Class 1 Devices

• Average programmer background is OK

– The OS allows full multi-threading as “usual”

– No need to change programming paradigm

Pains of Coding on Class 0 Devices

• Implementing from scratch

– Imposes a non-standard programming language or
“misuse” of an existing one

– Cannot one-to-one port existing code: need a new
code base

hello_world - Contiki

#include "contiki.h"

#include <stdio.h>

PROCESS(hello_world_process, "Hello world process");

AUTOSTART_PROCESSES(&hello_world_process);

PROCESS_THREAD(hello_world_process, ev, data)

{

 PROCESS_BEGIN();

 printf("Hello, world\n");

 PROCESS_END();

}

hello_world - RIOT

#include <stdio.h>

int main(void)

{

 puts("Hello, world!\n");

}

Easier Coding on Class 1 Devices

• Leveraging more well-known tools

– The OS allows ANSI C

• Allows for easy porting of existing code for Unix, BSD or Linux
(for example BSD socket API)

– Reuse well-known development and debugging tools

Pains of Coding on Class 0 Devices

• Increased design complexity, e.g.

– Split phase execution to not block the system

– Complex state machine to enable multiple connections
(uip_process() >1200 lines)

Easier Coding on Class 1 Devices

• Safer and quicker coding

– Reducing the need for new code development and
maintenance

• Additional benefits:

– Microkernel architecture increases robustness

– IPC API facilitates distributed programming and M2M
communication

Efficiency aspect

• event-loop based systems

– Considered to be more efficient in terms of memory
usage and energy efficiency than multi-threading

– One of the reasons why FreeRTOS etc. not used

Efficiency aspect

• Contiki:
– ~35kB RAM usage

 (w/ uip & RPL on ARM7)

– Energy consumption:

 50mA/40mA/80mA

• RIOT:
– ~40kB RAM usage

 (w/ 6lowpan & RPL on ARM7)

– Energy consumption:

 58mA/30mA/80mA

• RIOT application w/ 6lowpan on MSP430:

• 9,7kB RAM usage

• 43kB ROM usage

• Preliminary results show RIOT on par with Contiki

Work in progress

• Implementation of COAP on RIOT

– Compare with aspects reported in draft-kovatsch-lwig-
class1-coap-00

• Broaden deployment by support more hardware
platforms (16 bit MCUs and 32 bit CPUs)

Thanks

Questions?

