## Congestion Control of MPTCP: Performance Issues and a Possible Solution

Ramin Khalili, T-Labs/TU-Berlin, Germany

R.khalili, N. Gast, M. Popovic, J.-Y Le Boudec, draft-khalili-mptcp-performance-issues-02 draft-khalili-mptcp-congestion-control-00



#### Measurement-based study supported by theory

focus on congestion control part of MPTCP [RFC 6356]



outline: 1. examples of performance issues
2. can these problems be fixed in practice?

#### LIA [RFC 6356]: "Linked Increases" Algorithm

- adhoc design based on 3 goals
  - 1. improve throughput: total throughput  $\geq$  TCP over best path
  - 2. do not harm: not more aggressive than a TCP over a path
  - 3. balance congestion while meeting the first two goals
- as also stated in RFC 6356, LIA does not fully satisfy goal 3

## MPTCP CAN PENALIZE USERS

R. Khalili, N. Gast, M. Popovic, J.-Y. Le Boudec, "Performance Issues with MPTCP", draft-khalili-mptcp-performance-issues-02

#### Scenario A: MPTCP can penalize TCP users



- bottleneck for type 1 user is at the server side
- bottleneck for type 2 users is at the access side

#### Scenario A: MPTCP can penalize TCP users



- type 1 users upgrade to MPTCP users
- MPTCP transmits significant traffic over R1: no benefits for type 1 users but hurts R2 users

## Throughput of type 2 users reduced without any benefit for type 1 users



#### We compare MPTCP with two theoretical baselines

- 1. optimal algorithm (without probing cost): theoretical optimal load balancing [Kelly,Voice 05]
- 2. optimal algorithm with probing cost: theoretical optimal load balancing including minimal probing traffic
  - using a windows-based algorithm, a min probing traffic of 1 MSS/RTT is sent over each path

#### Part of problem is in nature of things, but MPTCP seems to be far from optimal



### CAN THE SUBOPTIMALITY OF MPTCP WITH LIA BE FIXED IN PRACTICE?

R. Khalili, N. Gast, M. Popovic, J.-Y. Le Boudec, "Opportunistic Linked-Increases Congestion Control Algorithm for MPTCP", draft-khalili-mptcp-congestion-control-00

## LIA's design forces tradeoff between responsiveness and congestion balancing





provide congestion balancing

#### be responsive



 $\epsilon$  is a design parameter

# OLIA: an algorithm inspired by utility maximization framework

- simultaneously provides responsiveness and congestion balancing
- an adjustment of optimal algorithm [Kelly, Voice 05]
  - by adapting windows increases as a function of quality of paths, we make it responsive and non-flappy
- implemented on the MPTCP Linux kernel

## Set of collected paths (collected\_paths)

- *l<sub>r</sub>*: smoothed estimation of number of bytes transmitted between last two losses
- **best\_paths**: set of paths with max  $(l_r * l_r)/rtt_r$ 
  - paths that are presumubly the bests for the MPTCP connection (based on TCP loss-throughput formula)
- max\_w\_paths: set of path with max windows
- collected\_paths: set of paths in best\_paths but not in max\_w\_paths

#### OLIA: "Opportunistic Linked-Increases Algorithm"

For each path r:

• increase part: for each ACK on r, increase w<sub>r</sub> by

 $w_r/\mathrm{rtt}_r^2$   $(\sum_{p \in \mathcal{R}_u} w_p/\mathrm{rt})$ optimal congestion balancing: adaptation of [kelly, voice 05]

responsiveness; reacts to changes in current windows

 $w_r$ 

• decrease part: each loss on r, decreases  $w_r by w_r/2$ 

OLIA reforwards traffic from fully used paths to paths that have free capacity

 $\alpha_r(t)$  is calculated as follows:

• if r is in collected\_paths, then

 $\alpha_r(t) = \frac{1/\text{number_of_paths}}{|\text{collected_paths}|}$ 

 if r is in max\_w\_paths and if collected\_paths is not empty

 $\alpha_r(t) = - \frac{1/\text{number_of_paths}}{|\text{max_w_paths}|}$ 

• otherwise,  $\alpha_r = 0$ .

# Scenario A: OLIA performs close to optimal algorithm with probing cost



## Summary

- MPTCP with LIA suffers from important performance problems
- these problems can be mitigated in practice
- OLIA outperforms LIA in all scenarios we studied [CoNEXT 12]
- suggestion: congestion control part of MPTCP should be revisited by the IETF committees

### References

- [RFC 6356]: C. Raiciu, M. Handly, and D. Wischik. "Coupled congestion control for multipath transport protocols". 2011
- [Kelly, Voice 05]: F. Kelly and T. Voice. "Stability of end-to-end algorithms for joint routing and rate control". ACM SIGCOMM CCR, 35, 2005.
- [CoNEXT 12]: R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec. "Non pareto-optimality of mptcp: Performance issues and a possible solution". ACM CoNEXT 2012 (best paper).

#### BACK UP SLIDES

# Theoretical results: OLIA solves problems with LIA

- using a fluid model of OLIA
- Theorem: OLIA satisfies design goals of LIA (RFC 6356)
- Theorem: OLIA is Pareto optimal
- Theorem: when all paths of a user have similar RTTs, OLIA provides optimal load balancing

#### An illustrative example of OLIA's behavior symmetric scenario



OLIA uses both paths; it is non-flappy and responsive

## An illustrative example of OLIA's behavior asymmetric scenario



OLIA uses only the first one; it balances the congestion

### Static fat-tree topology: OLIA explores path diversity and show no flappiness



(a) Aggregated throughput.

(b) Throughput of users.

a data center with fat-tree topology (similarly to what studied at [MPTCP-Sigcomm 2011])

#### Highly dynamic setting with short flows

| algorithm    | .Short flow finish<br>time (mean/stdev) | Network.core<br>utilization |
|--------------|-----------------------------------------|-----------------------------|
| MPTCP - LIA  | $98 \pm 57 \text{ ms}$                  | 63.2%                       |
| MPTCP - OLIA | $90 \pm 42 \text{ ms}$                  | 63%                         |
| Regular TCP  | $73 \pm 57 \mathrm{ms}$                 | 39.3%                       |



4:1 oversubscribed fat-tree; 1/3 of flows are long flows and 2/3 are short flows (similarly to [MPTCP-Sigcomm 2011])