
Operational Data in NETCONF
& YANG

draft-bjorklund-netmod-operational-00

Martin Björklund
⟨mbj@tail-f.com⟩
Ladislav Lhotka
⟨lhotka@nic.cz⟩

11 March 2013

Problems to Address

˵ Parameters with “dual” character, where the value used opera-
tionally may differ from configured value. țe client needs to be
able to learn the operational value.

Example: IP address leafs in ietf-ip contain configured addresses.
țe address that’s in operational use should also be available.

Currently, this can only be accomplished by some form of data du-
plication (separate config and operational value, or config and RPC).

˶ I2RS talks about “fast path” configuration, i.e. ability to change
state without the overhead of intervening data stores.

Such mechanisms should play well together with NETCONF.

˷ Information about system inventory, i.e. installed hardware, soft-
ware options etc.

For example, this is where a client could find out about names and
locations of installed interfaces.

2

˸ Default list contents: list entries that cannot be deleted but need to
coexist with other (configured) entries in the same list.

Example: the main routing table is created by the system, and it
cannot be deleted, but additional tables may be configured by the
client.

3

Operational State Datastore

OSD contains all parameters that govern the device or provide informa-
tion about its instanteneous state, i.e. both config true and config
false.

OSD may be modified indirectly through NETCONF, but possibly also
through other management interfaces (CLI, SNMP, I2RS agent…)
and/or network protocols.

4

Config and Operational State

leaf foo {
config true;
…

}

leaf bar {
config false;
…

}

opstate

running config

foo

foo

bar <get-operational>

<get-config>

5

Data Validity and Constraints

Most constraints in YANG are currently imposed on configuration data,
but in fact it is OSD where the validity really matters. Common rules are
needed for coexistence with other management interfaces.

Options:

1. All constraints on config, nothing on OSD (no change).

2. All constrains on OSD, nothing on config.

3. New YANG statements for specifying constraints on OSD, e.g.
osd:mandatory.

6

What It Does Not Solve

Cases where the config and operational values differ in their type.

Typical situations:

• țe permitted values for the configurations are a superset of opera-
tional values.

Example: Duplex can be full|half|auto in config but operational
values are only full or half.

țis can be handled by the proposed approach - just one leaf definition
for both.

• țe opposite situation – possible operational values are a superset
of config values.

Example: Interface status can be configured as up or down but other
operational values are possible: lower-layer-down, testing etc.

țese still have to be defined as separate leafs.
7

Various Ideas (Not in the I-D)

˵ Define global XML attribute “inactive” that blocks copying configu-
ration to opstate.

In running:
<foo yang:inactive="true">6378</foo>

opstate

running config

foo

bar

8

˶ Predefined read-only list entries in OSD?

Example: Main routing table can be a permanent entry of the list
rt:routing-table and appear only in OSD. Additional configured
entries would be appended to this list.

9

