
Trond Myklebust 

<trond@netapp.com> 

NFSv4.1 dynamic 
slot allocation 

1 



What is dynamic slot allocation? 

 A tool for managing global session resources 

– Allows dynamic resizing of the replay cache on 

a per-client, per-load basis 

 The client communicates to the server whether 

or not it can fill all slots. 

 The server then decides how many slots it 

should allocate to that client in the future. 

 Communication occurs via the SEQUENCE 

operation, which means that updates occur on 

every COMPOUND. 

2 



Ordinary session management 

 Number of session slots negotiated at 

CREATE_SESSION time 

– ca_maxrequests sets the table size 

– Server pins sr_highest_slotid and 

sr_target_highest_slotid to ca_maxrequests-1 

– Server ignores the client settings of 

sa_highest_slotid 

 If the server runs out of resources, it can force 

renegotiation of the session by returning 

NFS4ERR_BADSESSION. 

3 



Dynamic session management 

 Initial session table size still negotiated at 

CREATE_SESSION time. 

– Session table size changes communicated 

using SEQUENCE: sr_highest_slotid and 

sr_target_highest_slotid reply fields 

– Server may adapt table size using its own 

policy criteria. E.g. client load, resource 

availability 

– Also a callback mechanism for out-of-band slot 

recalls. 

4 



How does the client communicate load? 

 The session slots are numbered from 0…n. 

 The client is required to allocate all slots from 

0…n-1, before it can use slot n. 

 In each SEQUENCE call, the client fills the 

sa_highest_slotid field to reflect the highest 

slot number in use at the time the 

SEQUENCE was sent. 

5 



How does the server reply? 

 The server fills the sr_highest_slotid with the 

highest slotid that the client is allowed to use. 

– This is the highest slotid for which the server is 

caching the sequence number. 

 It fills the sr_target_highest_slotid with the 

highest slotid that the client should use in the 

future. 

– IOW: as soon as the client sees this target, it 

should stop allocating new slotids > target. 

6 



Some notes 

 sr_target_highest_slotid <= sr_highest_slotid 

 Since dynamic slot allocation is not a 

mandatory feature (but a really useful one), 

then servers SHOULD ensure that for clients 

that don’t support dynamic slot allocation, 

sr_highest_slotid >= 

csr_fore_chan_attrs.ca_maxrequests-1 (see 

CREATE_SESSION). 

7 



Sounds easy. Where’s the catch? 

 Asynchronous nature of communication 

means that the client and server need to be 

careful when updating the values for 

sr_highest_slotid, sr_target_highest_slotid. 

– SEQUENCE requests/replies on different slots 

can be reordered w.r.t. each other. 

8 



How does reordering create problems? 

 Client sees incorrect limits: 

9 

T=10 

H=15 

H=5 

T=5 

H=10 

H=5 Client 

Server 
T=5 

H=5 

H=10 



How does reordering create problems? 

 Server sees incorrect client load: 

10 

T=7 

H=7 

H=5 

T=6 

H=6 

H=6 Client 

Server 
T=6 

H=6 

H=7 



When can sr_highest_slotid decrease? 

 After changing sr_target_highest_slotid. 

– Need to know that the client is not trying to 

replay any requests on those slots 

– Check sa_highest_slotid. 

 But what if it was reordered? 

11 



How does reordering create problems? 

 Server retires sr_highest_slotid too early: 

12 

T=7 

H=7 

H=6 

T=6 

H=6 

H=7 Client 

Server 
T=6 

H=6 

H=7(replay) 



When can sr_highest_slotid decrease? 

 After changing sr_target_highest_slotid. 

– Need to know that the client is not trying to 

replay any requests on those slots 

– Check sa_highest_slotid. 

 But what if it was reordered? 

 Solve reordering problem by checking 

sa_highest_slotid only on slots on which the 

new sr_target_highest_slotid have been sent. 

– Server needs to track value of 

sr_target_highest_slotid for each slot. 

13 



When can sr_highest_slotid decrease 

 Alternative server strategy is to only grow the 

window using sr_target_highest_slotid 

mechanism. 

– Use CB_RECALL_SLOT to tell the client to 

shrink the window 

– Problem is that only solves the reordering 

issues for server highest slotid limits. 

14 



Protocol nits… 

 RFC5661 does not say what happens to the 

sequence id for a “new” slot, when the server 

raises sr_highest_slotid. 

– Should it be initialised to ‘0’ on the server? 

 Reordering corner cases: client may fail to see 

slot being retired and then reinstated… 

 Alternative is to allow any initial value. 

– Need an errata… 

15 



Implementation: client 

 Linux 3.7 upstream NFSv4.1 client and newer 

implements dynamic slot allocation on the 

forward channel. 

– Supports CB_RECALL_SLOT 

– Client will generate extra SEQUENCE ops in 

order to satisfy lower target highest slotid. 

– Implements simple smoothing to avoid re-

ordering issues w.r.t. highest slotid and target. 

16 



Implementation: server 

 Server patches published and available for 

Linux 3.7, and 3.8. Not yet upstreamed. 

– Implements basic client-driven policy 

 grow the number of slots by ¼ when 

sa_highest_slotid >= sr_target_highest_slotid 

 Shrink slot table when sa_highest_slotid is 

decreasing 

– Global maximum number of slots. 

– Smoothing used to avoid sa_highest_slotid 

reordering issues. 

17 



18 


