A Firewall for CCN

IETF / NMRG March 14, 2013

David Goergen Thibault Cholez Jérôme François Thomas Engel

SnT – Interdisciplinary Centre for Security, Reliability and Trust

SINT securityandtrust.lu

OUTLINE

- Introduction
- Content Centric Networking
 background
- Design
- Implementation
- Evaluation
- Conclusion

A Firewall for CCN

INTRODUCTION

Introduction

- Trend towards content retrieval
- Content Centric Networking is built and designed to follow this
 - Some security measures already built-in
 - Authentication of content
 - But real security tools missing
- Our contribution:
 - Identify the security needs for a CCN architecture
 - Design of a semantic CCN firewall
 - Performance evaluation

Related work

- Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: Proceedings of the 5th international conference on Emerging networking experiments and technologies. pp. 1–12. CoNEXT '09, ACM, New York, NY, USA (2009)
- D. Smetters, V. Jacobson: Securing Network Content (October 2009)
- Lauinger, T.: Security & scalability of content-centric networking (September 2010)
- Goergen, David; Cholez, Thibault; François, Jérôme; Engel, Thomas: Security monitoring for Content Centric Networking, Data Privacy Management and Autonomous Spontaneous Security
- partly funded by BUTLER and IoT6 FP7 EU projects under the grant agreements 287901 and 88445

A Firewall for CCN

CONTENT CENTRIC NETWORKING BACKGROUND

Content Centric Networking - CCN

- New paradigm proposed by Van Jacobson et al.
- Redesign networking focusing on data instead of hosts (who provide the data)
- Shift from a communication oriented paradigm to a distribution oriented

. . .

• To provide the same functionalities as TCP/IP with build in security features, more efficient content diffusion, mobility,

How does it work?

- Routable data instead of routable host
- Content is named in a hierarchical prefix based way

Examples:

- uni.lu/people/goergen/presentation/im2013
- thisRoom/projector
- Like IP, CCN is semantic free. Meaning is defined by application, global conventions, etc.
- Content is requested by user's Interest
- Anyone who has the solicited content can answer

CCN architecture

- CCN Packets:
 - Interest Packets that express Interest for a certain content
 - Data Packets, signed by the contents producer, reply to a certain Interest and consume it
- CCN tables:
 - Content store
 - local repository filled with shared content
 - Pending Interest Table (PIT)
 - Contains pending Interest requests send upstream to a content provider
 - Forward Information Base Table (FIB)
 - Contains the faces which correspond to a certain Interest

CCN node model

Routing example

11

13

Security layer

- No Content transmission before Interest reception
 - Renders classic Denial-of-Service, like flooding, inefficient
- Strongly relies on cryptography
 - Authentication of Content and its producer
 - Exclusion of untrustworthy sources
- But new kind of attacks
 - Stateful routers \rightarrow More vulnerable ?
 - Missing tool for enforcing security policies

A Firewall for CCN

IP firewall general use cases

- IP_UC1
 - Based on the protocol
 - Example: http, mail, p2p, voip, ...
- IP_UC2
 - According to the status of the connection
- IP_UC3
 - Using known blacklisted IP addresses
- IP_UC4
 - Unusual inbound traffic
 - From a denial of service attack

CCN-specific use cases

- CCN_UC1
 - Filtering on content provider
 - Example: known untrustworthy or banned
- CCN_UC2
 - Filtering on bad signature
- CCN_UC3
 - Filtering on content name and semantic
 - Example: excluding files with certain extensions
- CCN_UC4
 - Composition (content provider & content name)

CCN-specific use cases

- CCN_UC5
 - Filtering on content direction
 - Example: avoid leakage of certain documents
- CCN_UC6
 - Filtering on heavy traffic
 - Perservation of QoS
- CCN_UC7
 - Filtering of stored data
 - Example: Only storing specific content

Comparison

IP use cases	CCN use cases	Filtering on
IP_UC1	CCN_UC3	Protocol / Content name
IP_UC2		Status of the connection
IP_UC3	CCN_UC1	Listed IP / Content provider
IP_UC4	CCN_UC6	Unusual / Heavy traffic
	CCN_UC2	Bad signature
	CCN_UC4	Composition of filters
	CCN_UC5	Content direction
	CCN_UC7	Stored data

A Firewall for CCN

IMPLEMENTATION

Syntax definition

- Syntax based on iptables
 - Ease of use and readability
- Distinguish between 3 types of rules

- r_interest

 interest SP direction SP match_interest SP "pit" SP action

- r_face

• face SP number

- r_data

data SP direction SP match_data SP
["cs" | "pit"] SP action

r_interest & r_face

interest SP direction SP match_interest SP "pit"
SP action

- direction
 - int | ext | *
- match_interest
 - * or regular expression
- action
 - forward | drop
- example :

interest * \@game|play|fun\@ 15 pit drop

face SP number Number of active faces

• example :

face 200

r_data

data SP direction SP match data SP ["cs" | "pit"] SP action

- direction
 - int | ext | *
- match_data
 - content_name SP provider
- content_name
 - * or regular expression
- provider
 - sign_check SP provider_sign
- signcheck
 - 0 | 1
- provider_sign
 - * or hex representation of one or more signatures
- action
 - forward | drop
- example :

data * \@game|fun\@ 0 123456789ABCDEF;FFF0000AAAA pit drop

Pre-processing with Disco

- >= 3 character sequences are extracted
- Segmented as real human-readable words
- For each sequence find x similar alternative sequences
- Recombine with original to create new regular expression

Implementation into CCN stack

A Firewall for CCN

EVALUATION

Setup

- 6 nodes
- Intermediate routers don't cache
- Consumer request single binary file
 500MB or 1GB
- Measured transfer time request → received

1st evaluation: Impact of rules

- Impact on the number of processed rules
 - Increasing step 100
 - Request 500 MB and
 1 GB file
- Shows small to no impact on transfer time

2nd evaluation: Clean vs. Firewall

Probability

- Repeated experiment to obtain significant results
- Firewalled CCN
 1000 rules
- Request 500 MB file
- Applied Chi-square and KS-test on obtain result

A Firewall for CCN

CONCLUSION

Conclusion

- Introduction of a first firewall implementation dedicated to CCN
 - Use case analysis
 - Grammar definition
 - Implementation
- Use of semantic tools
- Overhead of the firewall is neglectable
- Published in IM2013 MC2: Security Management and Recovery; A semantic firewall for Content Centric Networking
- Future Work
 - Rule reordering
 - Using Bloom filters

THANK YOU FOR YOUR ATTENTION QUESTIONS?