
OSPFv3: Homenet and Data Centers

Homenet Requirements

- Homenet is trying to develop supporting technologies for a very simple, but technologically advanced, home
 - Primarily focused on IPv6
 - Zero Configuration if at all possible
 - Interface to Smart Grid technologies including Zigbee/802.15.4
 - Multi-subnet with routing an option
 - Potentially multihomed to multiple ISPs
 - Edge Routing to resolve BCP 38 issues

I have been asked about **Cl&R/E-Medti-ãspædcapour**

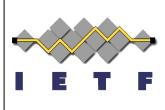
Topologies are defined by metrics on links between router interfaces within the routing domain


The link does or does not have a metric within the topology

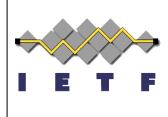
Automatically routes around discrepancies between physical and logical topology

routing cases could be

Edge routing is routing to a de fadigter couteintgaits i scout its ighte a the farolutiogted threating outside the reuting domain logies for eagh Bre Breferiane advertised in OSPIFER'S that might abay equised in 08ie Etest threat right have the A number of source/destination directed rooting is a reachability


predgeroeting per al per chability problem, not a *topology*

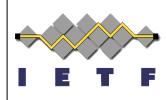
Context

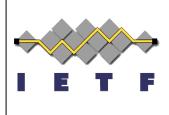

- RFC 5340 defines three prefix LSAs
 - Fixed format, which makes it hard to add information to them
- I'm looking at
 - Homenet requirements for egress routing
 - Multi-tenant Data Center requirements for tenantto-tenant access control

draft-baker-ipv6-ospfextensible

- I defined three extensible LSAs, replacements for intra-area-prefix-LSA, interarea-prefix-LSA, and AS-external-LSA
- I have since been told of Abhay Roy's extensible LSA draft in draft-ietf-ospf-mtospfv3 (2007)
- I'll use whatever extensible technology the WG approves

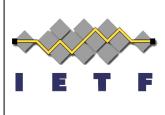
Flow label and Source Address sub-TLVs


- Premise:
 - Reachability TLV, with sub-TLV(s), identifies a set of possible messages to send down a route
 - Need comments on route calculation and FIB design

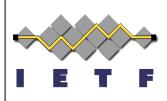

Route Calculation

- Normal OSPFv3 route calculation:
 - Identifies a sequence of routers and links from calculating router to router advertising TLV
 - "Router" might be a Network LSA
- LSA, in this case, identifies not only the destination but a qualification

ZA


 Traffic with a different source address or flow label follows a different route, or no route

Backward compatibility


- Acee asked about making this work in networks with RFC 5340 format LSAs as well
- Really not a problem:
 - Definition of source prefix sub-TLV:
 - A zero-length LSA (::/0) can be represented with a sub-TLV whose length is zero or no sub-TLV
 - Definition of flow label sub-TLV:
 - "any" flow label is specified by leaving the sub-TLV out
- RFC 5340 LSA by definition leaves those sub-TLVs out. Semantically equivalent.

FIB Design

- Not subject to standardization.
- Some suggestions in an appendix
 - Linux (Waikato extensions) has separate FIBs by source prefix.
 - One could insert destination into appropriate FIB, or all FIBs if source not specified
 - PATRICIA tree
 - Allows a discontiguous bit string, differing don't-care sets
 - Recursive descent following most useful bits
 - Final answer compared to entire specification

Possible use cases

Source Prefix

- Egress Routing
 - Most TLVs in network destination-only
 - Default routes to upstream specify PA source prefix
- One could imagine more general uses, such as dynamic "ACL"

Flow Label (RBAC model)

- Long discussion about use of the Flow Label in the IETF, with many suggestions
- One could also use it as a tenant id in a multi-tenant data center
 - IPsec or TLS still required for proper end-to-end security
 - Tagged route limits attack possibilities to neighbors that know the "password"