NADA: A Unified Congestion Control Scheme for Real-Time Media

Xiaoqing Zhu and Rong Pan
Advanced Architecture \& Research
Cisco Systems

March 2013

Agenda

- Design goals
- Network congestion signals
- Receiver behavior
- Sender operations
- Highlight of results

Design Goal \#1: Limit Self-Inflicted Delay

network queue

network queue

Design Goal \#2: Leverage A Suite of Feedback Mechanisms

Design Goal \#3: Weighted Bandwidth Sharing

Congestion Signals At the Network Node

Avg. Queue Occupancy

Receiver Behavior

- Obtain per-packet observations:

$$
d_{n}=t_{r, n}-t_{s, n} \quad \mathbf{1}_{M}:=\left\{\begin{array}{ll}
0, & \text { no marking } \\
1, & \text { w } / \text { marking }
\end{array} \mathbf{1}_{L}:= \begin{cases}0, & \text { no loss } \\
1, & \text { w/ loss }\end{cases}\right.
$$

- Calculate equivalent delay:

$$
\tilde{d}_{n}=d_{n}+\mathbf{1}_{M} \stackrel{\downarrow}{d_{M}}+\mathbf{1}_{L} d_{L}^{\downarrow}
$$

- Exponential smoothing:

$$
x_{n}=(1-\alpha) x_{n-1}+\alpha \tilde{d}_{n}
$$

Sender Operation

- Linear prediction:

$$
\hat{x}=x_{n}+\frac{\left(x_{n}-x_{n-1}\right)}{\delta} \tau_{o}
$$

- Calculate target rate:

$$
R_{o}=R_{\min }+w\left(R_{\max }-R_{\min }\right) \frac{x_{r e f}}{\hat{x}_{n}}
$$

- Adjust for sending buffer:

$$
R_{s}=R_{o}+\beta \frac{L_{s}}{\tau_{v}}
$$

Result at Equilibrium

Simulation Setup

- Six competing streams
- Comparison of three modes: w/o ECN, ECN-based, and PCN-based.

Without ECN: Per-Stream Rate

Without ECN: Bottleneck Queue Length

Without ECN: Congestion Signal

Without ECN: Packet Loss Ratio

With ECN: Congestion Signal

With PCN: Congestion Signal

Key Benefits of NADA

- Fast rate adaptation
- Weighted bandwidth sharing
- Graceful transition within a range of congestion signals: delay, loss, ECN/PCN markings
- In case of PCN: zero standing queue

$.1|\cdot| l \mid$.
cISCO

Backup Slides

System Overview

Slow-Start Rate

$$
R_{s s}(t)=R_{\min }+\frac{t-t_{o}}{T}\left(R_{\max }-R_{\min }\right)
$$

time horizon

