# A Delay Based Congestion Control Candidate

Stefan Holmer

### **Problem**

At what bitrate can a sender transmit data while still keeping the end-to-end delay low and avoiding packet loss?

### What is RRTCC?

- Receive-side delay-based estimation of available bandwidth with the goal of minimizing contention.
- Based on filtered packet inter-arrival times.
- Inter-arrival time > 0, queues are building up.
  - Back off.
- Inter-arrival time < 0, queues are draining.</li>
  - O Hold.
- Otherwise, queues are stable.
  - Increase.

# Modeling

### Over-using:

The one-way delay  $d_i$  increases as queues are being filled.

$$\Delta_i = d_i - d_{i-1} > 0$$

Approximately inversely proportional to the capacity:

$$\Delta_i = dL/C_{min} + w_i = dL/C_{min} + m_i + v_i$$

$$E\{v\}=0$$



### **TODO**

- Better self-fairness under different noise.
- Handle AQM/ECN/packet loss at receiver.
- Multiple RTP streams.
- Compete with TCP.

# **Backup Slides**

### **Estimation/Detection**

- Estimate the slope and offset.
- Most filters will do the job. We chose the Kalman filter.
  - Adaptive, handles random jitter as noise.
- Measure incoming rate when offset > threshold.
- Adjust target rate to some factor of the incoming rate.

# Signaling

- Both estimation and control at the receiver.
- Transmit bandwidth estimates to the sender.
- The sender chooses to transmit at any rate <</li>
   BW estimate. Employs own simpler algorithm to avoid problems of lost feedback messages.

## **Self-fairness - Problems**



 Flow A and B are controlled by RRTCC.

 Flow C is constant at 1.3 Mbps.

 Flow A is "noisier" than B due to C.

## **Self-fairness - Problems**



- Different amount of cross traffic.
  - Flow A is more noisy than B due to significant cross traffic at N1.
  - Noisier signal means more filtering and slower detection.
  - Flow B loses against flow A.

## **Self-fairness - Possible solution**



- Fixed noise variance.
- Additive Increase, Multiplicative Decrease.
- Send-side smoothing.

### **Late Newcomer**



- Not an issue.
  - Monitoring delay changes.
  - No base-delay which can be biased.
  - Reduces to a selffairness problem.

# **Bursty Cross-traffic**



- Cross traffic toggles between 0 and 400 kbps every 0.2 s.
- AIMD and noise variance fixed at 50.
- Similar behavior with MIMD and adaptive noise variance.