
W3C Web Crypto API 
Update
Ryan Sleevi



Why are we talking about 
the W3C in the IETF?



● The W3C Web Crypto WG charter calls for 
active liaising with the IETF JOSE WG

● Protocols matter to application developers. 
RFCs do not exist in a vacuum.

● The W3C is actively soliciting feedback from 
the broader Internet community, particularly 
those skilled in applications and 
cryptography - like many participants in the 
IETF.



Background

● W3C Working Group chartered at the end of 
2011
○ Result of several community groups and workshops 

on identity in the browser
● Looking at the set of problems facing web 

developers today regarding crypto & identity, 
and how browsers/user agents can solve 
them
○ This includes the "drive-by" web, but also other use 

cases such as the W3C SysApps WG, with very 
different security models



State of Web Crypto

● Support for TLS client certs
● (Mixed) support for <keygen> tag

○ Lets you generate an RSA key and provide POP
○ Not widely implemented

● Variety of vendor-specific extensions 
(CAPICOM/XEnroll, 
generateCRMFRequest) and plugins



State of JS Crypto

● JSBN
● Stanford Javascript Crypto Library (SJCL)
● CryptoJS 
● Closure Library ("goog.crypt")
● OpenPGP.js
● Forge
● Qooxdoo
● CryptoCat
● Mega
● ... and no doubt more



If you can do crypto in JS, 
why a browser API? 



Problems with JS Crypto

● Constant time is hard
○ JS engines are constantly changing and tuning how 

they optimize code, leading to a variety of ever 
changing expectations for how code will actually run

● Entropy is hard
○ Math.random() is not secure

● Correctness is hard
○ Many JS implementations by skilled JS authors, 

unskilled cryptographers
○ You explicitly don't want everyone re-implementing 

AES from the spec. As shown repeatedly, it's quite 
hard to get right (c.f. constant time)



Problems with JS Crypto

● Performance is hard
○ In JS, all numbers are 64-bit floating point
○ BigNum math in JS relies on "elegant" hacks like 

using only 28 bits of the 64-bits, since that's what 
"works"

○ Until Typed Array specification for WebGL, no good 
way to represent arbitrary binary data in JS. 
Everything was a UTF-16 character array 
(DOMString)



If JS Crypto is so hard, 
why do people bother?



"Web" is a broad term

● Can mean the "drive-by" web - the (untrusted) sites and 
origins you visit in your browser

● Can mean the extensions you install in your browser
● Can mean the Web Apps/Sys Apps you "install" in your 

browser
● Can mean the "apps" you install on devices like your 

smart TV
● Can mean apps that use the JS engines developed 

for/used by browsers (eg: node.js)
● And for some, can refer to just the combination of HTML 

+ JS, with a variety of different security guarantees and 
problems



What are people actually writing

● SSH (RFC 4253) clients
● S/MIME (RFC 3851) clients
● OpenPGP (RFC 4880) clients
● Chat applications (eg: CryptoCat)
● Authentication frameworks (eg: 

BrowserID/Persona)



What can browsers / user 
agents do to make it 

better?



Browser Crypto Stacks

● Browsers today already ship with support for 
full crypto stacks, by virtue of SSL/TLS 
support

● Features such as WebRTC/Rtcweb further 
support with DTLS/SRTP

● ... Can we expose that to JS?



Making it better

● Provide quality entropy
○ Can provide cryptographically-strong RNGs, beyond 

just Math.random()
● Provide quality implementations

○ Potentially FIPS-validated implementations
○ Constant time (hopefully...)

● Provide better performance
○ Can leverages the underlying hardware (eg: AESNI, 

64-bit BigNums)



Current Approach



Provide access to low-level 
algorithms

● Primitives such as AES (CTR, CBC, CMAC, 
GCM, CFB), SHA-1/SHA-2, RSA, DH, 
ECDH, ECDSA

● KDFs such as Concat (NIST SP 800-56A) 
and HKDF (RFC 5869), as well as 
password-based such as PBKDF2 (RFC 
2898)



Isn't that... dangerous?



Yes.



Alternatives

● Only provide a high-level API
○ Cryptography is hard - don't encourage more of it.
○ Developers should just have simple 'encrypt' and 

'decrypt' APIs - let browsers/the W3C define the 
secure construction.

But what does that mean?
○ Based on JOSE?
○ Based on NaCl?
○ Based on KeyCzar?
○ Based on SJCL?
○ Based on... ?



Alternatives

● Only provide a high-level API
○ Doesn't solve the need of real developers and real 

applications today.
○ Security will remain a hard problem - cryptography is 

only part of that.
○ Developers who have no idea what they're doing will 

continue to do what they've always done. Most will 
continue using libraries and code written by people 
who do know what they're doing (eg: jQuery, Dojo, 
YUI, Prototype, MooTools, etc)

○ Poor story for the non-drive-by-web (eg: Sys Apps, 
extensions)



Alternatives

● Provide a high-level API for SSH / PGP / 
S/MIME
○ ... Does every user on the Internet really want their 

browser to be an SSH client?



Alternatives

● Fix Javascript/ECMAScript
○ Problem is even more broad and ill-defined as a 

language feature.
○ Lots of proposals for TC39 already for even broader 

issues than that of cryptography.
○ Possible place for a BigNum API (Performance, 

Constant Time)



What about JOSE?



JOSE

● W3C WG currently lacks consensus on how 
much or how little of JOSE should be used.

● W3C WG is focused on an API. JOSE is 
about a protocol/exchange format.
○ Very different problems and use cases.
○ High-level vs Low-level

● However, JOSE-led specs are being 
explored for:
○ Key representation/transport (import/export, 

wrap/unwrap)
○ May or may not make sense in the long run



JOSE

● W3C Web Crypto WG is still discussing how 
the use of JWK/JWE for (wrapped) key 
affects other aspects of the API
○ Algorithm naming (eg: "A128-CBC" vs "AES-CBC" 

with a 128-bit key)
○ JOSE's MTI requirements
○ Handling key provisioning (importing integrity-

protected attributes - protection of keys against 
application using the keys)



Questions?


