Scalable Multi-Class Traffic Management in Data Center Backbone Networks

Amitabha Ghosh, Edward Crabbe, Jennifer Rexford

What we're doing

Joint optimization of rate control and routing taking into account application performance constraints and business priority

Some Selected Motivations

- Make efficient use of network resources
- Globally optimize throughput taking into account relative traffic characteristics and priority
- Datacenters may be run by single operator
 - we control the horizontal and the vertical
 - if optimization control loop is not too flabby, there may not as much need to encode priorities in packets
- protocols running inter-datacenter may not implement fairness objectives
 - that play well with TCP
 - at all, either implicitly or explicitly
- there may be many demand priority levels (> 8)

Investigation

2. DaVinci

Flow Utility

$$U_s^k = w_s^k \bigg[a^k f^k(\cdot) - b^k g^k(\cdot) \bigg]$$

Weighted Utility of flow s of traffic class k

U ^k s	Utilitiy of flow s of class k
k	traffic class
S	flow
f ^k	throughput / loss sensitivity
g ^k	delay sensitivity
w ^k s	weight of flow s of class k
a ^k	weight coefficient for throughput / loss sensitivity of class k
b ^k	weight coefficient for latency sensitivity of class k

Two Layer Architecture

Two Layer Decomposition

allocate flow level bandwidth for each class

Message Passing

Three Layer Architecture

Simulation

Abilene Topology

Two Classes of traffic, randomized flows

Results: Convergence

Results: Message Passing

Backup

GLOBAL optimization used for experiments

$$\begin{array}{ll} \text{maximize} & \mathcal{U} = \sum_{k} \sum_{s \in \mathcal{F}^{k}} w_{s}^{k} \left[a^{k} f^{k} \left(x_{s}^{k} \right) - b^{k} g^{k} \left(u_{l}^{k} \right) \right] \\ \text{subject to} & \sum_{s \in \mathcal{F}^{k}} \sum_{p} A_{lp} R_{sp}^{k} z_{sp}^{k} \leq y_{l}^{k}, \ \forall k, l \\ & \sum_{k} y_{l}^{k} \leq c_{l}, \ \forall l \\ \text{variables} & z_{sp}^{k} \geq 0, \ \forall k, s, p \\ & y_{l}^{k} \geq 0, \ \forall k, l \end{array}$$

 $A_{lp} = \begin{cases} 1, & \text{if link } l \text{ lies on path } p \\ 0, & \text{otherwise.} \end{cases}$

 $R_{sp}^{k} = \begin{cases} 1, & \text{if flow } s \text{ of class } k \text{ uses path } p \\ 0, & \text{otherwise.} \end{cases}$

[${\cal F}$	Set of all flows across all classes.
[\mathcal{F}^k	Set of flows in class k .
[c_l	Capacity of link <i>l</i> .
	w_s^k	Weight of flow s of class k .
[z^k_{sp}	Rate of flow s of class k on its p^{th} path.
[y_l^k	Bandwidth allocated for class k on link l .

Two Tier Message Passing

Rate of Convergence vs Class Level Step Size

Message Passing

